

Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Computer Science

Master’s thesis

Telecommunication provider’s monitoring

tools

Bc. Vojtěch Udržal

Supervisor: Ing. Ondřej Macháček

24th May 2017

Acknowledgements

I would like to thank my supervisor Ing. Ondřej Macháček and his colleagues
Ing. Václav Surovec and Peter Macháčik for giving me the opportunity to
work on this thesis and for their support during the development. I would
also like to express many thanks to my partner for her great support and
understanding. Last but not least, I would like to thank my parents for overall
support during my studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive author-
ization (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on 24th May 2017 .

Czech Technical University in Prague
Faculty of Electrical Engineering
c© 2017 Vojtěch Udržal. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Electrical Engineering. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Udržal, Vojtěch. Telecommunication provider’s monitoring tools. Master’s
thesis. Czech Technical University in Prague, Faculty of Electrical Engineer-
ing, 2017.

Abstrakt

Ćılem této diplomové práce je návrh a implementace monitorovaćı aplikace pro
telekomunikačńıho operátora. Práce nejdř́ıve představ́ı infrastrukturu, systém
pro mediaci a nástroje pro monitorováńı. Poté se zabývá analýzou systému
pro mediaci a rozeb́ırá nové možnosti pro jeho monitorováńı. V daľśı části je
popsán návrh, implementace a vyhodnoceńı nové monitorovaćı aplikace. Dále
je v práci popsáno několik big data nástroju, které operátor použ́ıvá, a pro
jeden z nich je vytvořen monitorovaćı modul.

Kĺıčová slova mobilńı operátor, monitorováńı, mediace, telekomunikace,
Python, JavaScript, MongoDB, ZooKeeper

ix

Abstract

The goal of the thesis is to design and implement a new monitoring applic-
ation for telecommunication provider. At first, the thesis briefly introduces
provider’s infrastructure, mediation system and monitoring tools. Next, it
analyzes mediation system and discusses new ways of its monitoring. At last,
a design and implementation of a new monitoring application is described
and evaluated. Additionally, several big data tools used by the provider are
discussed and a monitoring module for one big data tool is implemented.

Keywords monitoring, mediation, telecommunication, provider, Python,
JavaScript, MongoDB, ZooKeeper

x

Contents

Introduction 1

1 Mediation system monitoring analysis 3

1.1 Mediation system . 3

1.2 Mediation system in provider’s context 4

1.3 Monitoring . 5

1.4 Currently used monitoring . 6

1.5 Analysis of flows . 6

1.6 Other tools for monitoring . 12

1.7 Functional Requirements . 14

1.8 Non-functional Requirements 14

2 Big data tools analysis 17

2.1 Data processing tools . 17

2.2 Data infrastructure tools . 18

2.3 Monitoring of big data tools . 20

3 Design and Implementation 23

3.1 Selecting technologies . 23

3.2 Outage detection . 36

3.3 Architecture design . 43

3.4 Monitoring daemon . 43

3.5 API service . 48

3.6 Data model . 50

3.7 Backend Implementation . 52

3.8 Frontend application . 55

4 Design and Implementation of ZooKeeper Monitoring 61

4.1 Outage detection . 61

4.2 Monitoring daemon . 62

xi

4.3 API service . 62
4.4 Data model . 63
4.5 Frontend application . 63

5 Deployment 65
5.1 Deploying the application . 65
5.2 Running the application . 66
5.3 Deployment to production . 66
5.4 Deployment to DigitalOcean . 67
5.5 Running ZooKeeper . 68

6 Evaluation 69
6.1 Mediation monitoring evaluation 69
6.2 ZooKeeper monitoring evaluation 72

7 Conclusion 73
7.1 Personal evaluation . 74

Bibliography 75

A Application Dependecies 79

B Acronyms 81

C Selected configuration files 83

D Contents of enclosed CD 87

xii

List of Figures

1.1 Architecture Overview . 4

1.2 GSM MSSBRN1A - Thu Mar 3, 5 minutes granularity 7

1.3 Running mean . 8

1.4 Weighted cumulative running mean 8

1.5 Savitzky–Golay filter . 9

1.6 Increased granularity to 60 minutes 10

1.7 ICG - CENTREX01 - week traffic 11

1.8 ICG - MSSBRN1A - traffic around 17th November 12

1.9 SMS - MSSBRN1A - traffic around Christmas Holiday 12

1.10 Use case diagram . 15

2.1 ZooKeeper architecture setup . 20

2.2 Cloudera Manager . 22

3.1 One minute document structure 28

3.2 Programing language popularity 31

3.3 React components hierarchy - from risingstack.com 35

3.4 React components passing state via props 35

3.5 Independent days prediction . 38

3.6 National holidays with weekend median 40

3.7 Calculating traffic difference . 41

3.8 Tick and day difference . 42

3.9 Outage detection of SMS - SMSCCTX from 20th of January 2017 44

3.10 Application’s architecture . 45

3.11 Flow analysis process . 46

3.12 Class diagram of traffic queries . 53

3.13 Application’s dashboard . 56

3.14 Country detail . 56

3.15 LoB detail . 57

3.16 Flow detail - traffic graphs and configuration 58

xiii

4.1 ZooKeeper monitoring . 64

5.1 Supervisor control panel . 66

6.1 EWSDICCDR February decrease of traffic 70

xiv

List of Tables

3.1 Popularity Score according to db-engines.com 27
3.2 Daylight saving time change on 26th of March 2017 54

xv

Introduction

In today’s world of information technologies, systems are becoming more com-
plex and ubiquitous and our every day lives depend on them. Nowadays,
people are expecting online service to be available immediately, everywhere
and always. Any outage of service poses a threat as it can have significant
impact on company’s revenue and reputation. No software can be guaranteed
to contain zero bugs and have uptime of 100% and even if it could, IT systems
are still influenced by real world events as they must be at least physically
hosted in some data center. It is even more the case of IT companies and
enterprises whose businesses are closer to real world, and telecommunication
service providers (TSP) are one of them.

Telecommunication providers can be considered as core elements or back-
bone of modern society. Except for traditional postal service, communication
between 2 entities on distance longer than few meters depends on their ser-
vices. Outage of their systems is therefore even more serious and sensitive
issue as people take phone and internet services for granted. To prevent and
minimize failures, every system and its metrics must be carefully monitored.

First of all, this thesis will introduce mediation system, describe its role
in TSP’s infrastructure, analyze its metrics and currently used monitoring
techniques.

Afterwards, the thesis will focus on development of better mediation sys-
tem’s monitoring algorithm and application and the whole development pro-
cess will be discussed.

This thesis was written and the final application was developed for Com-
petence and Delivery Center of one of the 3 largest telecommunication pro-
viders in the Czech Republic. This application was developed in accordance
with their needs and they will be referred to as stakeholders.

Several chapters are also dedicated to big data tools used by the provider
and their monitoring. However, this part of thesis and application is not meant
to be used by the stakeholders and is considered to be a proof-of-concept.

1

Chapter 1

Mediation system monitoring
analysis

In this chapter I will introduce the problem domain in detail, describe medi-
ation system, currently used monitoring tools and its flaws. Moreover, I will
specify requirements that were considered as important for the new monitoring
application.

1.1 Mediation system

In general, mediation system’s task is to connect heterogeneous systems by
formatting and modifying transported data to meet each system’s expecta-
tions. If I were to find a similar system from software engineering field, which
is my main area of expertise, I would compare it to Apache Camel [1].

Simply put, an administrator of mediation system defines a set of routes,
extractions and transformations between heterogeneous systems so that it
complies with the company’s needs and business requirements and the medi-
ation enables systems to communicate with each other.

To understand a function of mediation system in telecommunication pro-
vider’s field, one first needs to understand the base principle of their network.
The network consists of thousands or tens of thousands base radio stations,
telephone exchanges and other network elements. Each user (provider’s client)
must be connected to one of these elements if they want to make a call, send
a text message or use any other service. The element is keeping metadata
information of all service usages that happened on it. The metadata is called
call detail record (CDR) and contains information about calling and called
numbers, duration of a call and so on. The term CDR is also used for text
messages and other services usage and similar information is tracked [2]. It is
important to note that it does not contain an actual content of a call or a text
message. Each element has its own limited memory where this metadata in-

3

1. Mediation system monitoring analysis

formation is stored. The metadata are submitted to the mediation system in
batches once accumulated data’s size exceeds specified threshold or a timeout
is reached. Then, the mediation system decodes the batch and sends relevant
parts to subsequent systems in proper format for further processing. The sub-
sequent systems are typically billing, fraud detection, data warehousing, data
analysis, legal investigation and many more.

Core Network
Elements

Cell Phone
Radio Tower

Billing

Fraud Detection

Data
Warehouse

Mediation System

Input flow Output
flows

Figure 1.1: Architecture Overview

Each of these systems is important, yet the billing system is one of the really
business critical ones. Its task is to record provided services to each client
based on the received metadata. If the metadata are not delivered to this
system, the information about a call or a text message cannot be properly
accounted and billed and the telecommunication provider loses money.

1.2 Mediation system in provider’s context

The mediation system at provider’s network is called iBMD (international
Billing Mediation Device) and is an international platform that is respons-
ible for collecting and processing telecommunication data from four European
countries: the Czech Republic, Germany, Austria, the Netherlands. The data
include information about every phone call, sent SMS or MMS, internet usage
or any other service usage offered to public or private clients and businesses by
the provider. iBMD is managed by Competence and delivery center Prague
(CDCP). It deals with a lot of interesting, but also very sensitive and valuable
data, where ten billion of CDRs are processed every day. Therefore, data
security, correctness, availability and completeness is a must in this area.

Essentially, the mediation system has input and output flows of data.
The input and output data flows are hierarchically split into several categories.
On the highest level it is divided by a country name. Then, in each country
there are about 40 categories of services, also called LoBs (Line of Business).
They represent type of service in the network: for example there is SMS,
GSM or MMS LoB. Then, each LoB has various number of incoming data
flows coming from network elements (also called inputs) and outgoing data
flows (also called forwards) [2]. The incoming data flows are the metadata

4

1.3. Monitoring

collected from the network elements and the outgoing data flows are decoded
and transformed data going to subsequent IT systems. An output flow can
also be called as a forward flow since it represents a connection between input
and output.

To best illustrate the hierarchy of flows, I will describe the Czech Repub-
lic’s SMS LoB in more detail. The provider has the Czech Republic divided
into four regions and each region has one main city. The cities are Prague,
České Budějovice, Hradec Králové and Brno. Each city then has four Mobile
Switching Servers where metadata from other network elements are collec-
ted and from where the mediation system collects them. In Prague, names
of Mobile Switching Servers and thus names of input flows are MSSPRC1A,
MSSPRC1B, MSSPRC1C and MSSPRC1D. Likewise, there are input flows
named MSSBRN1A from Brno, MSSHRK1A from Hradec Králové and MSS-
CEB1A from České Budějovice. There are sixteen input flows in the Czech
SMS LoB and each one is transformed and forwarded to twelve subsequent
systems. That means there are 192 forward flows in the SMS LoB (sixteen
inputs times twelve outputs). In total, including all countries, LoBs, inputs
and forwards, there are currently over 4500 flows in the mediation system.

1.3 Monitoring

As was described in previous sections, the mediation system is critical plat-
form for every telecommunication provider. Even partial outage of input flow
or the platform itself can have impact on the provider’s revenue and cred-
ibility. Therefore, it is in the provider’s best interest to have a reliable and
effective monitoring tool detecting any anomaly in the system. The outages
can be caused by various events. The common causes are upgrades of network
elements to some new or unsupported protocol or format, which typically res-
ult in problems on input flow. Likewise, changes of mediation configuration
or transformation rules are common causes of outage on forward flows.

A prerequisite for monitoring of any system is to have access to metrics of
the system. In this case, it means to have information about how much data is
passing through each flow in the mediation system. Extracting this kind of in-
formation out of the mediation was already implemented by the provider and
I was granted access to it, including historical data for past months. The data
do not consist of CDRs or other network activity records, but contains only
sizes of collected or sent batches to or from the mediation. For input flow,
it contains name of country, name of LoB, name of network element, time
the data was received and size of a batch. For forward flow it also contains
name of target system. In a way, the source data for a mediation monitoring
can be understood as metadata of metadata. While metadata collected from
one network element in one day can easily exceed hundreds of megabytes,
storing the size takes only few bytes per batch and still gives great insight

5

1. Mediation system monitoring analysis

into traffic level on the mediation system. Nevertheless, the monitoring data
of forwards for one country and one day still takes about 30MB and contains
over six hundred thousand of records (transmitted batches). The input data
per country and day are about 3MB large and contains seventy-four thou-
sand of records. That means seventy-four thousands of batches collected by
the mediation system.

1.4 Currently used monitoring

The mediation system is storing size of each processed file to Oracle database
where it is accessed by other systems, including currently used monitoring
tool. However, that tools is quite simple and therefore insufficient. Each
input or forward flow has an attribute which specifies maximum interval, in
which at least one byte of data must be transmitted via that flow. If no data
is transmitted in the specified interval, alarm is triggered. The disadvantage
of this is obvious. Even if the traffic on some flow is only 1% of what it
is usually, the alarm will not be triggered as long as at least one byte is
transmitted in the time limit. Every transmission of a byte resets the limit
and the countdown starts from the beginning. There were already several cases
when a customer was not billed for some used services because the mediation
system was misconfigured and did not forward some data as it should have.
The application is written in PHP and only contains an input field for each
flow to set the maximum interval attribute. It does not give any insight of how
much data is passing through the mediation system, nor gives the possibility
to look at historical data. The new monitoring tool should be designed and
implemented in a way that the mentioned problems will be eliminated and
will provide better insight into the mediation system traffic.

1.5 Analysis of flows

In order to come up with a better algorithm for monitoring the mediation
system and detecting outages, it is necessary to first look at, examine and
analyze the flows that are going to be monitored. As mentioned earlier, there
is about 4500 flows in the mediation system. To simplify the text, I will choose
few flows with different characteristics that will be used as examples. Usually
flows of one LoB have similar features, but there are few exceptions.

The first thing one notices when looking at the data is, that different flows
have different period in which they are downloaded to mediation system or
sent to subsequent systems. It is caused by buffers at the network elements,
where the data is stored until a certain size is reached or time period elapsed
and only after that it is sent to the mediation system. In figure 1.2 is depicted
MSSBRN1A flow of GSM LoB with five minute ticks period on the x axis.

6

1.5. Analysis of flows

Such settings is too fine-grained for the mentioned data flow, causing the flow
level to be very unstable and therefore making any further analysis impossible.

Figure 1.2: GSM MSSBRN1A - Thu Mar 3, 5 minutes granularity

1.5.1 Data smoothing

Several preprocessing techniques can be applied on the data to enable further
analysis. First one I tried was to smooth the data. There are numerous
ways how to smooth a data and in this section I would like to introduce few
techniques that I tried.

1.5.1.1 Running mean

First of them was running mean. It is called running mean because it uses
window of fixed size n and uses data points inside of the window to calculate
mean. As the computation advances to compute mean of a following data
point, the window moves as well. When calculating simple running mean,
the data point xi being smoothed is in the middle of the window and the mean
is calculated from points between xi−n/2 and xi+n/2. The problem with this
approach is that it does not meet the requirements of the use case. The ap-
plication will need to analyze the data as it comes in a stream and only
the previous data points will be available at the time the analysis is ran. This
method would be feasible for showing historical data, but I thought that it is
better to use one algorithm for both, showing historical data and actual real
time analysis to keep things simple, consistent and predictable.

Therefore, I looked into cumulative mean next. The cumulative mean is
using window which has only points preceding the data point being smoothed.
In other words, when smoothing point xi, data points in the window are
between xi−n and xi. The outcome of this method is highly depending on
a configuration of how many previous data points should be considered. If
the window is small, the filter is more sensitive to local anomalies, as seen in

7

1. Mediation system monitoring analysis

Figure 1.3: Running mean

figure 1.3 around 13:00. The more the size of a window is increased, the more it
is resistant to local anomalies. However, with increased window size the filter
gets also more resistant to trend changes. That can be seen when the traffic
increases in the forenoon or decreases in the afternoon. The smoothed data
by simple running mean (10) is delayed by about one hour, if not more.

Figure 1.4: Weighted cumulative running mean

To remove the lag from cumulative running mean and make it reflect
a trend faster, I tried weighted cumulative running mean. The idea behind
this is to assign more importance to values closer to a point that is being
smoothed. The results improved in desired way, but still were still not suffi-
cient. Also, for a data set with longer period the weighted mean is less stable
than cumulative mean, as shown in figure 1.4

8

1.5. Analysis of flows

I also tried calculating running median, but the results turned out to be
even worse than running mean.

1.5.1.2 Savitzky–Golay filter

Furthermore, I tried another smoothing method called Savitzky–Golay filter.
It was first published in 1964 in [3]. Even though this filter’s window contains
half of the preceding data points and half of succeeding data points - and
therefore is not feasible for the use case - I was very surprised by the smoothed
results it produces that I have decided to mention it in this text as well.
The Savitzky–Golay filter expects two parameters, a polynom’s order d and
window’s size n. When calculating the smoothed value of point xi, the filter
uses linear least square method to find optimal coefficients of a polynom with
order d to most fit data points between xi−n/2 and xi+n/2. The smoothed value
of xi (middle data point of the window) is found by using the polynom with
calculated coefficients. The Savitzky-Golay filter is widely used smoothing
method and is one of the top ten most cited articles ever published in Analytic
Chemistry journal [4]. Readers looking for more detail explanation of the filter
I would recommend article [5].

Figure 1.5: Savitzky–Golay filter

1.5.2 Increased tick size

Out of the previously mentioned methods of smoothing dataset into a more
stable flow, none would completely satisfy my needs. Furthermore, any smooth-
ing of data removes some information or anomaly which might turn out im-
portant later. Therefore, I have decided that the best I could do is to increase
the size of ticks of the dataset and thus remove any high frequencies caused
by buffers and periodical file submissions. The length of a tick will be further
named as a granularity. The MSSBRN1A flow of GSM LoB is shown in figure

9

1. Mediation system monitoring analysis

with granularity of 60 minutes 1.6. This level of granularity means that in
case of outage on this flow, the monitoring system will detect it no later than
in 60 minutes. While this may sound still like a too long time, the currently
used monitoring tool has for this flow a timeout interval of 360 minutes.

While examining flows, it quickly turned out that the minimal but accept-
able granularity can range from 15 minutes to 1440 minutes (one day). Also,
the granularity can change over time due to changes on preceding network
elements to even less than 15 minutes. For these reasons, the new monitoring
application will need to have an interface which will allow users to examine,
prototype and set the right granularity for each flow.

Figure 1.6: Increased granularity to 60 minutes

1.5.3 Traffic changes and trends

From the beginning it was made apparent by the stakeholders that there are
hours or days when the level of traffic is exceptionally different from its usual
level. The new monitoring tool should be aware of such a possibility and try
to reflect it as much as possible. In this section I would like to analyze and
describe unusual changes in traffic so I can later design appropriate algorithm.
It comes as a no surprise that the root cause for any irregularities of a traffic
are national holidays, weekends and special events with nation-wide impact.

First of all I looked into a regular week with no national holidays or known
events. It was found that most of the flows have smaller traffic on weekends
than during work day. For few flows, such as MMS LoB, the traffic can be just
slightly lower - by about 8%. I assume it is caused by the fact that sending
MMS is not strictly a work day activity and therefore is equally popular on
weekends when people, for example, share their activities in free time. On
the other hand, the weekend traffic of ICG - CENTREX01 is smaller by 97%
than the traffic during work days. A whole week traffic is shown in figure 1.7.
ICG is LoB for collecting data from VOIP land lines of business customers

10

1.5. Analysis of flows

Figure 1.7: ICG - CENTREX01 - week traffic

of a company acquired by the provider several years ago, so the dramatic
decrease on weekends is understandable. The GSM - MSSBRN1A has 50%
smaller traffic on weekend than on week days. Based on these findings it was
concluded, that weekdays and weekends will need to be handled independently.

I focused on national holidays next. The way how traffic behaves on na-
tional holidays quite depends on other factors, such as type of the holiday and
day of a week. If the holiday day was close to a weekend, such as Friday 28th
of October 2016, the traffic seemed to be lower than when the holiday was
on Wednesday 28th of September 2016. However, there is not enough of data
to make any reliable conclusion about trends of traffic on national holidays.
It is safe to say though, that the traffic on national holidays is very similar
to the traffic on weekends. There also appeared an interesting occurrence
around national holiday on 17th of November 2016. That day is national hol-
iday, however, it has also noticeable impact on surrounding days, 16th and
18th of November. The traffic on these days was about 35% lower than usual
and following weekend was also influenced 1.8. The reason behind this might
be prolonged holiday, when many people took vacation from 16th to 20th of
November. Yet, the significance is surprising and worth mentioning.

As one could expect, the traffic around Christmas Holidays and New Years
is also very unstable. As shown in figure 1.9, the traffic (or number of sent
text messages in this particular case) on 24th of December is about twice as
high as on other weekends or national holidays. On the other hand, the whole
following week after Christmas is noticeably less busy due to the fact that
most people take vacation and communicate less. The Christmas Holidays
are ended by New Years Eve, where the traffic sky rockets around midnight as
people send New Year wishes. Surprisingly, the traffic does not reach the same
level as on Christmas Day and quickly diminishes.

Another request from the stakeholders was that the monitoring tool follows

11

1. Mediation system monitoring analysis

Figure 1.8: ICG - MSSBRN1A - traffic around 17th November

Figure 1.9: SMS - MSSBRN1A - traffic around Christmas Holiday

long-term trends. When traffic is slowly increasing or decreasing day by day,
the algorithm should adapt accordingly.

These are briefly explained challenges that the new monitoring application
is expected to handle. In a design part I will describe how each one of them
was tackled.

1.6 Other tools for monitoring

Before I started to design and implement the new monitoring application,
I also had a look on already existing tools, which might have similar func-
tionality or at least be a good source of inspiration. Apart from the already
mentioned custom made mediation monitoring tool in section 1.4, I asked
the stakeholders what other tools they use for monitoring of all their systems,
not just mediation.

For years the main tool used for monitoring of distributed systems in

12

1.6. Other tools for monitoring

provider’s network was IBM Tivoli [6]. Tivoli Systems Inc. was found in
Texas in 1989 by former employees of IBM and was acquired by IBM in 1996
[7]. Nowadays it is offered as part of IBM’s product called Cloud & Smarter
Infrastructure.

In 2012 the provider’s management decided to replace Tivoli by TrueSight
[8] from BMC. The reasons for this replacement are not publicly available, yet
personally I had the feeling that Tivoli is rather a system with quite a lot of
legacy technologies and technical debt, while TrueSight seems more progress-
ive and modern. Truesight is a complex product offering four main modules:
TrueSight Intelligence, TrueSight Pulse, TrueSight Capacity Optimization and
TrueSight Operations Management. Out of these four, TrueSight Intelligence
is most similar to what mediation monitoring application should achieve. As
their website says, ”TrueSight Intelligence is a digital analytics platform that
scales to discover, organize, and analyze high volumes of volatile IT operations,
service, and business data..”. Apart from being able to get data from REST
APIs and other TrueSight products, it also integrates with high-volume data
tools like Apache Spark, Kafka and Cassandra. However, most importantly,
the documentation says that TrueSight Intelligence ”automatically learns be-
havior of any metric: machine data, service desk, business, or external (e.g.
social media, traffic, and environmental) and visualizes behavior and detects
abnormalities” [9]. Unfortunately, the provider does not have this module
purchased, so I could not examine it in more detail. Moreover, purchase of
this or any other module is a complex process and is out of control of Com-
petence and Delivery Center, so it is not expected to be available in at least
the next year or two.

The provider has numerous divisions and has acquired several companies
in its life time. Each acquisition is usually followed by a decision, whether
different tools with the same purpose in newly acquired company should be
replaced or coexist. This results in numerous often obsolete monitoring tools
being used and it is difficult to cover them all in the thesis. Nevertheless,
I would like to describe one more monitoring system of operating systems,
which is built with modern technologies and therefore interesting.

Monitoring of operating systems consists of several independent tools.
First tool is collectd [10], which is running on each host and in periodical in-
tervals sends various statistics of the OS to Logstash [11]. Logstash is an open
source tool for collecting, parsing and transmitting logs and contains plugins
for all kinds of inputs and outputs, including collectd. In other words, it might
be called mediation system focused on logs. Logstash’s task is to collect met-
rics from collectd and store them in Elasticsearch [11]. Elasticsearch is a very
popular and extremely fast search engine, which in this use case stores metrics
from all operating systems. Last step in the pipeline is Kibana [11], which is
data visualization plugin for Elasticsearch and allows to build UI and custom
graphs over the stored metrics data. The metrics of each operating systems
are then easily available to support engineers via web browser. The pipeline

13

1. Mediation system monitoring analysis

from Logstash to Kibana is also called as ELK stack and the products are
open source and developed by Elastic Inc. [11].

1.7 Functional Requirements

Based on the analysis of problem domain and discussions with the stakehold-
ers, a high-level requirements were agreed on. Most of them were decided in
the beginning and are essential for the main goal of the system, but some of
them were added later, when it turned out as a useful feature. Following list
is an overview of the high-level requirements.

F1 Visualization of flows Users will be able to visualize data flows, in-
cluding historical data.

F2 Adding and removing flows Users will be able to add or remove
data flows. As a nice-to-have feature the application could detect and
add new data flows automatically.

F3 Countries support The application will support flows from 4 countries
- the Czech Republic, Germany, Austria and the Netherlands.

F4 Monitoring and anomaly detection The application will be mon-
itoring data flows and trigger alarms based on negative anomalies (out-
ages).

F5 Flows settings The application will allow users to change settings of
flows to tune the monitoring analysis.

F6 User login The application will support two user roles: root and read-
only. Available actions for each role are shown in figure 1.10.

F7 System integration The system will integrate with other systems to
receive mediation traffic data and to send detected outages.

F8 Provide API The application will provide API over the received me-
diation traffic data so other applications can use it and get access to
the data.

1.8 Non-functional Requirements

NF1 Performance The application will be reasonably performing to allow
trouble-free monitoring of all data flows and also to allow users to get
quick insight on the data.

NF2 Monitoring The application must provide a way that allows other
tools to monitor it.

14

1.8. Non-functional Requirements

Figure 1.10: Use case diagram

NF3 Design The application’s design should be clear and easy to use.

15

Chapter 2

Big data tools analysis

In this chapter I would like to describe what big data tools are used by the pro-
vider and how they are monitored.

In today’s market, effective processing and analysis of data gives huge com-
petitive advantage over other competitors. While one of the first companies
to do massive data collection and analysis were IT companies like Google or
Facebook, it is safe to say that nowadays data mining of all kinds is performed
by all key players in any type of industry, and telecommunications are not dif-
ferent. The provider is using big data tools for analysis of their customers
to offer them better services and experience. Unfortunately, most if not all
companies are keeping detailed information about their data mining efforts in
secret and thus they cannot be specified here. Therefore, I will focus strictly
on technical part of their big data stack.

2.1 Data processing tools

It can be said that one of the founding stones of modern big data processing
is article published by Google employees about MapReduce. ”MapReduce is
a programing model and an associated implementation for processing and gen-
erating large data sets. Users specify a map function that processes a key/-
value pair to generate a set of intermediate key/value pairs, and a reduce
function that merges all intermediate values associated with the same inter-
mediate key.” [12]. This article was used as an inspiration for development of
Hadoop MapReduce module, which works on the same principle and is part
of large big data software framework called Hadoop [13]. Another signific-
ant module of this framework worth mentioning is its distributed file-system
Hadoop Distributed File System (HDFS).

Hadoop was first released on September 4, 2007 and has experienced tre-
mendous hype soon after. However, in recent years as other big data pro-
cessing tools appeared, the fame of Hadoop MapReduce has started to de-
crease. Hadoop MapReduce has several flaws which make it not attractive

17

2. Big data tools analysis

for modern big data processing requirements. First of all, Hadoop MapRe-
duce is limited to only batch processing, making it unusable in cases where
stream processing is required. Next, Hadoop MapReduce has linear one dir-
ectional data flow and writes results of reducers immediately back to HDFS,
which make it slow due to many I/O operations. On the other hand, it does
not require much RAM, which might be beneficial in some cases. To close
the list of the biggest disadvantages, I would mention limited possibilities of
a map-reduce model. It is very difficult if not impossible to create machine
learning algorithms or even simple iteration algorithms, such as KMeans, on
a map-reduce model.

Because of mentioned disadvantages, Hadoop MapReduce is being replaced
by more progressive tool called Apache Spark [14]. It was initially created by
UC Berkeley and now is managed and developed by Apache Foundation. It
was developed specifically as a response to limitations of MapReduce model.
The key stone of Apache Spark are resilient distributed datasets (RDD).
Simply put, it is a distributed collection of elements and all operations (trans-
formations or computations) in Spark are executed on this collection. ”Under
the hood, Spark automatically distributes the data contained in RDDs across
your cluster and parallelizes the operations you perform on them.” [15]. Be-
cause of that, the programer can execute several subsequent operations on
data and Spark distributes and executes the operations in the most effective
way. In Hadoop MapReduce, this is not possible since data would have to
be written back to HDFS after every reduce function and therefore decrease
the performance heavily. Even though this approach brings more requirements
on large RAM capacity, Spark jobs can still be ran on commodity hardware
as the number of processing nodes can be easily scaled. Furthermore, increas-
ing RAM is much easier task compared to upgrading CPU or even increasing
disk space. Last but not least, since running operations on same data is much
easier in Apache Spark, there are already many machine learning libraries and
techniques that programers can take advantage of for their needs. Therefore,
it is no surprise that the telecommunication provider runs processing jobs only
on Apache Spark.

2.2 Data infrastructure tools

In most organizations, processing of data is only one part of their big data
stack. Usually there needs to be whole infrastructure built around the pro-
cessing tools to create the most effective setup. In this section I would like to
focus on a system called ZooKeeper [16], which is a true backbone of many big
data systems. ZooKeeper might be even less known than tools that are built
on top of it, such as Apache Kafka (distributed streaming), Hadoop YARN
(resource management) and many other distributed services.

Apache ZooKeeper is a project managed by Apache Foundation and their

18

2.2. Data infrastructure tools

aim is to ”develop and maintain an open-source server which enables highly
reliable distributed coordination.” [16]. It is a service which should ease de-
velopment of almost any distributed software and allows developer to imple-
ment code for synchronization, communication and coordination of distrib-
uted nodes, such as locks, barriers, queues and leader election. One way how
to look at ZooKeeper is as at distributed highly available file system. Zoo-
Keeper keeps information in a hierarchical tree, much like a file system does,
and each node of the tree is called z-node. Each z-node has a path, such as
/service1/node1 and stored data.

ZooKeeper is always ran as a cluster consisting of several nodes. Each node
must have configuration file with IP and port of all other nodes. When all
nodes have started, usually the node with the lowest id (first node online) is se-
lected as a ZooKeeper leader. At this point, other external applications (such
as Apache Kafka or Hadoop YARN) can connect to some node of the Zoo-
Keeper cluster and take advantage of its functionality. An overview of such
architecture is shown in figure 2.1. In order for ZooKeeper to be functional, at
least half of its nodes must be online and connected with each other (forming
a quorum). ZooKeeper cluster usually consits of odd number of nodes, typic-
ally 3 (1 can fail) or 5 (2 can fail). Running with even number of nodes does
not bring any benefit: with 4 nodes, still only 1 may fail to not cause failure
of the whole cluster. All write requests from external application nodes must
go through ZooKeeper leader which then distributes the requests to other
ZooKeeper nodes (so called followers). When more than half of ZooKeeper
nodes accepts the write request, it is successfully stored and client initiating
the request is notified. In case there was less than half of ZooKeeper nodes in
the quorum, the write will not succeed. This ensures that the data stored in
ZooKeeper are always either consistent, or not stored at all. A read request
is similar to write and will only succeed if more than half of ZooKeeper nodes
is online. The clients usually have list of all zookeeper nodes and their host-
names, so if the connection to one of them fails, they will try to connect to
other node, which might still be in the quorum and work. Apart from basic
writing and reading of data, ZooKeeper also allows clients to watch a spe-
cific znode for a change or acquire locks on z-nodes, which can be used to
implement coordination between distributed nodes.

The whole ZooKeeper software is far more complex and would require sev-
eral chapters if described in more detail. To readers interested in ZooKeeper
and willing to read more I would recommend the official and well maintained
documentation, which also contains tutorials and examples. Furthermore, to
developers considering usage of ZooKeeper in their own distributed application
I strongly recommend looking at Curator library [17]. It provides high-level
API of ZooKeeper, making its usage more simple and developer friendly, and
also already implemented recipes, such as leader election, queues or barriers
ready to be used out of the box.

The provider uses ZooKeeper as backbone for other tools that require it,

19

2. Big data tools analysis

Figure 2.1: ZooKeeper architecture setup

such as Apache Kafka or HBase, which is ”a distributed, scalable, big data
store” [18].

2.3 Monitoring of big data tools

All previously mentioned tools are open-source. On the first sight, that sounds
great and certainly is for an experimental, testing or first time usage. However,
for a reliable setup in a large company, many other steps need to be done.

The problems start coming when several of these tools should be combined
together, such as streaming data via Kafka to Spark and storing the results
to HDFS and HBase. Each of the tools have different release cycles, so issues
during upgrade can occur, and does not even have to be backward compatible
with itself, much less with other tools used. Furthermore, most of the tools
have ways how to get their health status or performance statistics, but none
have a way how to systematically and continuously monitor the tool and notify
IT department in case of problems that will surely occur.

To solve mentioned problems, there are companies like Cloudera or Hor-
tonworks, which offer big data tools packages. The packages contain most of
big data tools one might need and all are tuned and tested to work flawlessly
together. Furthermore, it has a fixed release cycle with extra features and bug
fixes, which might not be available in open-source releases yet. All this can dra-
matically speed up setup of company’s big data cluster and ease maintenance.
However, most importantly in regard to the topic of this thesis, these vendors’
distributions contain applications for monitoring the tools, nodes and whole
cluster. Since the provider is using Cloudera distribution, I examined it fur-
ther. Interestingly, some parts of Cloudera are for free and even open-source,
but more advanced and enterprise-facing features such as rolling upgrades or
auditing are only available in Enterprise paid versions. The Cloudera’s mon-
itoring tool is called Cloudera Manager and as I found out while running
Enterprise trial version, it is far more than just monitoring. It works as UI
interface to whole big data Cloudera cluster. It offers special tailored interface

20

2.3. Monitoring of big data tools

for each tool, allowing it to be configured, managed and monitored from one
place 2.2.

Due to time and thesis’s size constraints, I have decided to implement
monitoring of only one tool. I have chosen ZooKeeper because it is core tool
and backbone of many big data systems.

21

2. Big data tools analysis

(a) Health status overview (from Cloudera Documentation)

(b) ZooKeeper Configuration

Figure 2.2: Cloudera Manager

22

Chapter 3

Design and Implementation

In this chapter I will focus on selection of technologies, design of monitoring
algorithms and the whole application’s architecture. Moreover, I will also
describe user interface and interesting implementation details.

3.1 Selecting technologies

Selecting the right technologies is one of key factors that shape a software for
its whole life. A wrong decision can have devastating consequences. Every
lead software developer usually stands in front of this decision multiple times
in a software project. Although this case was more challenging than any
previous experience I have had before. As I was the one and only developer
on this project, I had to select the right technologies for the whole stack, from
database and backend technologies to frontend. On one hand it is very nice for
a developer, since he can choose technologies that he is most comfortable with
or wants to learn more about without being forced to work in a technology
due to management or legacy reason. On the other hand it requires him to
carry out extensive research of technologies to select the most suitable ones,
especially in areas he is not experienced in - which in my case was frontend.

3.1.1 Database

At first, I have decided to select technology for database, then for backend
and at last for frontend. It seemed to me that the database layer influences
the future architecture the most and can also be the biggest performance
bottleneck when chosen or designed poorly. Therefore, I did not want to be
restricted by any previously selected technology at this crucial point.

In the past years until around 2008, there was basically only one type of
database in use named relational. As the demand for storing and working with
big data increased, relation databases turned out to be insufficient and new
database types started getting popularity to satisfy new needs. Nowadays,

23

3. Design and Implementation

there are many (maybe too many) options to choose from with different pros
and cons. Out of all requirements for the new application I choose the following
points as most relevant and sensitive to database technology. In the following
sections I will introduce several database types and analyze their feasibility
with regard to the selected requirements.

To remind readers how mediation monitoring data looks like, it is rows
where each input flow row contains name of country, name of LoB, name
of source network element, time the data was processed and size of a file
containing CDRs. For forward flow it also contains name of the target system.

D1 Aggregate flows with different granularity As mentioned in 1.5.2,
the flows can have different granularity, ranging from 15 to 1440 minutes,
can change in time and is also expected to decrease in future to even less
than one minute. The database should be able to aggregate data or allow
backend to do that effectively in reasonable time (NF1), so the flow can
be visualized upon user’s request (F1) or analyzed by the application
(F4).

D2 Add or remove flows The flows can often be added or removed by
user or automatically by the application (F2).

D3 Store data for large number of flows As mentioned in 1.2, there
are currently over 4500 flows that should be monitored. The database
should be able to flawlessly scale as the number of flows increases or
decreases.

D4 Store other application data The database should be capable of
storing information about users (F6), flows (F5) and countries (F3).

3.1.1.1 Relational databases

Relational databases are probably the most used type of database and so far I
have worked with this type of database only. It is based on tables with columns
and rows, where each row represents one stored record. Relational databases
favor consistency and integrity of data by strictly given schema, transactions
and foreign keys. That is beneficial for storage of sensitive crucial data, where
consistency and integrity must be maintained at all times. To ensure that
data are consistent and integrity is achieved, correct relational database data
model should follow Third normal form (3NF) [19], which removes transitive
dependency, data redundancy (2NF) and keeps one value per column (1NF).
However, while this optimization helps us achieve mentioned goals, it brings
problems down the road, when data should be read or queried. Since business
records are normalized and stored across several tables, the database engine
or programer must first combine this data in order to get desired informa-
tion (typically by using JOIN query). In case of students and their enrolled

24

3.1. Selecting technologies

subjects, a database query will span across at least three tables: students,
students subjects and subjects. Relational databases, such as MySQL, can
handle easily from about a million of rows to ten million of rows if tuned cor-
rectly and that is in most cases more than enough. It is the machine generated
data, massive number of customers and other entities at big companies where
relational databases’ performance starts to be insufficient.

To evaluate feasibility of relation databases for my use case, I tried several
data models to store data. First and obvious one I started from is to have one
table, which would have column for each flow and row as a time entry. One
problem with this solution is how to decide the row granularity. The granu-
larity of flows can be smaller than one minute in future and storing entries by
five seconds, for example, can be very inefficient in terms of space or query
time, since there would be over three million rows created and indexed in 180
days. In case of fixed-lenght table, such as default settings of MyISAM stor-
age engine in MySQL, a row occupies same size even if it contains only NULL
values [20]. To prevent this, ROW FORMAT=DYNAMIC can be used when
creating the table and NULL values will no longer take space, but ”a row can
become fragmented (stored in noncontiguous pieces) when it is made longer
as a result of an update.”[20].

More serious problem is the row size limit though, which is 4096 columns
per MySQL table [20] and 1000 columns per Oracle 11g table [21]. To over-
come this limitation, data flows could be split into smaller tables, grouped by
LoB for example, or even each flow put in its own table. Nevertheless, there
would still be a problem with what granularity of the time entries should be
used. If each flow would have its own table, the table’s row granularity could
be adjusted independently, but would have to be decided at the time the data
is stored, not later.

The last data model would already satisfy my needs as specified in the data-
base requirements, but would still perform inefficiently in a case that data of
n flows should be retrieved at one time. In such a situation, not one, but n
queries must be executed on the database, because each flow is in different
table now. That means n times finding necessary keys of desired time range.
If the flows were all in one table, only one query with a SUM function and
an optimal GROUP clause is necessary. Moreover, new flow or LoB can ap-
pear at any time and thus each insertion of flow data would have to verify
that its column or table exists and create it if it did not.

Last but not least, relational databases are difficult to scale horizontally.
Usually, the performance can be improved by enhancing the machine (scaling
vertically) rather than adding other nodes. However, I and the skateholders do
not expect to need horizontal scaling, so this is not crucial for my application.

Overall, I think that relational databases would work, but would certainly
bring some limitations, such as worse performance when querying multiple
flows at one time, checking existance of table or column when inserting flow
data or the need to decide granularity at the time data is stored, not when it

25

3. Design and Implementation

is queried.

3.1.1.2 Document databases

Document databases are one type of so called NoSQL databases, which gained
on popularity especially in the last five years with development of cloud tech-
nologies and big data tools. Document databases do not have a fixed schema
and instead of tables use collections of documents. There can be unlimited
numbers of documents in one collection and they do not have to have same
structure. The only restriction is that each document must have some kind
of id attribute, which is used as a unique identifier and index key (analogy
of primary key from relational databases). It is up to an application if other
attributes of document should follow some structure and how strictly it should
be enforced. In general it can be said that document databases are far more
relaxed and less strict that relational databases. They do not offer transac-
tions (they must be implemented on application level) or foreign keys and
thus do not guarantee consistency. They usually offer eventual consistency
between nodes, which means that changes are not propagated to other nodes
immediately, but after some time. Furthermore, document database do not
have any mechanism of combining data from two collections, such as JOIN in
relational databases, which means that it also must be implemented on ap-
plication level. Therefore, it is recommended to denormalize data so the need
for joining two collections or documents is minimized.

For instance, to model students and their subjects (for which join across
three tables in relational database is needed), I can create only one collection
students, where each student will have attribute enrolledSubjects, which will be
a list of subjects. Each subject in this list can then be either just id, or small
to medium size object with other information such as subject’s description or
teacher’s name. There is no clear rule how much the data should be denormal-
ized. The more data are denormalized, the more effective the application will
be for read queries, but also there will be more redundancy, higher possibility
of data inconsistency and worse performance in case of data update. It is task
for developers to find the right amount of denormalization for their expected
queries and use cases.

3.1.1.2.1 Comparison of different document databases There are
many document databases available. In this paragraph I would like to focus
on the most significant ones: MarkLogic, MongoDB [22] and Couchbase. They
are all quite similar in terms of usability and it is very difficult to choose
one over another. According to db-engines.com, all of them place in the top
five in document stores category, together with AmazonDB, which can be
ran only as part of Amazon’s AWS platform, and CouchDB (predecessor of
Couchbase). When picking between these three databases it comes down to
personal opinion, preference and colleagues’ recommendations. Even though I

26

3.1. Selecting technologies

Name Popularity Score

MongoDB 325

Couchbase 30

MarkLogic 11

Table 3.1: Popularity Score according to db-engines.com

had no prior experience with document databases, I have already heard quite
a lot about MongoDB, which is clearly the most popular database available
3.1. What I appreciated on MongoDB and Couchbase is that they are open-
source and for free and while MarkLogic offers decent free licenses, it needs to
be manually renewed every 6 months. One thing that I especially liked about
Couchbase was their query language N1QL, which was introduced in 2015 [23].
Their aim is to make it as much similar to SQL as possible and ease it for
people used to relation databases - they even offer alternative to JOIN query.
Querying in MongoDB is done via composing JSON objects and submitting
them to the database. It is slightly difficult to get used to at first, but becomes
very powerful later on - especially when combined with MongoDB aggregation
framework 3.1.1.2.3.

After some considerations I have decided to perform further analysis on
MongoDB mainly due to its popularity and stick to it if it proves to work well.
It is very well proven, widely used and has large community online to ask for
help. On the other hand, Couchbase looks like a strong competitor with its
N1QL language and I am very curious if it is going to take more market share
in near future. Quite a lot of posts can be found from people considering
move from MongoDB to Couchbase. I ruled out MarkLogic as open-source
alternatives turned out very well and I am not a fan of closed software.

3.1.1.2.2 Data model For storing monitoring data of mediation flows I
have decided to create one collection called flows data. Each document in this
collection will represent one minute, which means, that in one year there will
be maximum of 525600 documents in this collection. Each document will have
id attribute, which will be date object, and data attribute, which will be object
storing data of all flows for that minute. The data object will have hierarchical
structure, with countries at top level, then LoB name, flow category (input or
forward), flow name and second. Structure of the document is shown in figure
3.1. The fact that the documents will be divided by minute will not cause
excessive number of records (and thus will not degrade the performance) and
because each flow will have up to 60 attributes corresponding to each second
of that particular minute, this structure allows us to store data with only 1
second granularity. This document structure is therefore very efficient and
flexible and because monitoring data are not complex and are without any
relations, disadvantages from previous paragraph about denormalization and

27

3. Design and Implementation

combining entities are not applicable here.

Figure 3.1: One minute document structure

Adding and removing flows (D2) is achieved naturally, I don’t have to
add any columns or modify existing documents - as data for new flow comes,
they are just stored to respective position in a hierarchy of the minute docu-
ment. Storing of many flows (D3) could become problematic in case all flows
would have record for each second. In such a case, for 4500 flows there would
be 270000 numbers (4500 * 60 seconds) to store in one minute document.
MongoDB has a limit of 16MB per document (Couchbase 20MB) and this
theoretical document would still not exceed 2.2MB when stored. Neverthe-
less, it is possible that performance would somewhat decrease. On the other
hand though, having data for each second of all flows is not going to happen
in foreseeable future and this theoretical limitation is acceptable by the stake-
holders.

Storing other application data (D4) is not going to be problematic since
the data model will not be complex and could be denormalized if needed. In
the worst case, relational database could be used to store entities for which
document database won’t be acceptable, although using just one database will
be preferred for the sake of simplicity.

3.1.1.2.3 Data aggregation Data aggregation (D1) is probably the most
necessary and at the same time complex requirement. It comes in play when
data needs to be aggregated by granularity for monitoring analysis (more in

28

3.1. Selecting technologies

1.5.2) or when user wants to see data for large time range, such as five days.
In that situation data needs to be aggregated into reasonable chunks to be still
meaningful (e.g. fifteen minutes intervals) but not too large for transmission.

Fortunately, MongoDB has aggregation framework which is used to achieve
same results as with SQL’s GROUP BY. In MongoDB, client composes ar-
ray of JSON objects which specify pipeline of one aggregation query. Each
object in the array represents a step (or stage in MongoDB’s terminology) of
the pipeline and transforms data in a certain way. To achieve desired results,
following stages had to used.

• $match Filters relevant documents only.

• $group Groups documents by specified expression or field. Requires
accumulator operator to aggregate the actual results.

• $sort Sorts documents.

In the first $match stage I only select relevant documents, let’s say from
1.1.2017 to 5.1.2017. Then in $group stage I have to transform attribute of
date type into individual numerical attributes year, month, day, hour and
minute. Based on how the conversion from date to numerical attributes is
done I control the granularity of resulting data. In $group stage I also have to
specify accumulator operator and attribute it will be executed on - I must use
$sum over data.CZ.GSM.input.MSSBRN1A.sum attribute of the documents.
After this stage, the documents are grouped and contain summed value of
data.CZ.GSM.input.MSSBRN1A.sum. To make subsequent sorting easier, I
also keep any date object as representative of each aggregated group. Final
sorting stage is straight forward and can be followed by $projection stage,
which can be used to remove no longer needed attributes. Example of group
stage in aggregation query is shown on 3.1.

db.collection (" flows_data ").aggregate(

[

{"$match": {...}},
{

"$group": {
"_id": {

"year": {"$year": "$_id"},
"month": {"$month": "$_id"},
"dayOfMonth": {"$dayOfMonth": "$_id"},
"hour": {"$hour": "$_id"},
"interval": {

"$subtract": [

{"$minute": "$_id"},
{

"$mod": [{"$minute": "$_id"}, 15]

}

29

3. Design and Implementation

]

}
},
"anyDate": {"$first": "$_id"},
"MSSBRN1A": {"$sum": "$data.CZ.GSM.input.MSSBRN1A.

sum"}
}

},
{"$sort": {...}},
{"$project": {...}}

]

)

Listing 3.1: MongoDB aggregation query

3.1.1.3 Other database types

I have done quick analysis of other NoSQL database types like key-value stores,
graph based and column based. First two were ruled out immediately since
they clearly do not fit this use case. What seemed to be more promising were
column databases like HBase or Cassandra [24]. The have some constraints
when it comes to querying data but on the other hand are capable to store huge
amounts of data and scale horizontally very well. In Cassandra I would use
similar data model as in MongoDB: minute as a row index and flow name with
second as a column name. It would be a bit challenging to store hierarchical
structure LoB, input type and flow name, but still doable. Cassandra database
has been evolving and changing ever since it was created and even though it
is stated that ”.. the data tables are sparse, so you can just start adding data
to it, using the columns that you want; there’s no need to define your columns
ahead of time.” in [25], the later version of Cassandra requires the column
schema to be defined up front, which can make inserting new flows’ data more
difficult as in relation databases. Nevertheless, I believe that column database
like Cassandra would work well for this use case, but it is not as friendly and
easy to use as MongoDB and a bit overkill. In case the data were multiple
times larger (for example if I dealt with actual CDRs’ content and not only
their sizes), I believe Cassandra would be well worth the time and effort.

3.1.1.4 Summary

Based on the previous analysis, document databases (and MongoDB) are the
most suitable for specified use case. Flows can be added and removed easily
and only one aggregation query is necessary to retrieve data of several flows
at one time. Therefore, the application will use MongoDB for persisting data.

30

3.1. Selecting technologies

3.1.2 Backend

Selecting backend technology and programing language can turn into never
ending discussion, where each debater can have different opinion and still be
right. From the very beginning of this project I was seriously considering three
languages for the backend layer and in this section I will describe their pros
and cons and which on was chosen.

3.1.2.1 Java

First of all I was considering Java. It is still the most popular language, but
currently experiencing decline in popularity according to TIOBE Index 3.2.
Nevertheless, in enterprise applications field Java is expected to keep large
market share. There is large number of frameworks and libraries available for
Java and together with my vast experience with it from professional and uni-
versity projects I knew that Java would not be a wrong choice. Furthermore,
it is also very strong in the field of big data and at the start of this project
there was possibility, that Spark or Hadoop will have to be used for analyzing
the data flows. Ironically, at the same time my past experience was discour-
aging me from using Java as I had already known that technology quite well
and I would learn nothing new. Last but not least, development in Java can
be slower compared to dynamic programing languages.

Figure 3.2: Programing language popularity

3.1.2.2 JavaScript

Next I was considering JavaScript. It has monopoly over frontend and with
release of Node.js it started quickly getting traction in backend, too. One
aspect of Node.js (and JavaScript in fact) is its asynchronicity. JavaScript is

31

3. Design and Implementation

ran only in one thread, which means that the programing code is not always
executed sequentially, but asynchronously. Simply said, the programing code
just specifies small functions (also called tasks or messages), that should be ran
and the thread (also called event loop) executes them whenever possible. This
brings big advantage when the programs’s task is to mainly do non-blocking
I/O operations, such as sending data from database to the application or
from the application to a user. In that case, JavaScript is not doing the main
work, it only sends query to database and moves onto some other tasks. Once
the data from database are ready, JavaScript receives callback, passes data
to network layer and again moves onto other tasks. Because of that, it is
possible to serve many requests with just one thread, compared to typical
worker-thread pool architecture, where each request is assigned to one thread.
On the other hand, if there should be some heavier CPU processing done at
each request, the whole server suddenly becomes far less performing. One of
other advantages is, that a developer does not have to change language when
switching between frontend and backend and with combination of MongoDB,
not even when changing to database layer, since MongoDB uses JSON for
queries.

3.1.2.3 Python

Python is general purpose programing language, which maintained stable user
base for past two decades. It is efficient, easy to write and is used especially
for complex scripts, backend applications, all sorts of science programs and
also data mining. It has a huge ecosystem built around with many libraries
for data mining, machine learning and numerical computation. When I was
evaluating Python, its versatility intrigued me the most, since I could use one
language for quick researching and analyzing the data and as well use it to
implement the backend layer. I dived deeper into Python’s frameworks and
found simple lightweight HTTP server called Flask [26]. I was also considering
Django, which is famous large framework for web applications, but it seemed
like a bit of overkill for this project.

3.1.2.4 Selected backend technology

After all I have decided to go with Python, since it can be used for everything
I might need to implement in this project. JavaScript was ruled out because
it is not suitable for heavy CPU processing and does not have many scientific
libraries. I did not want to use Java since I had already known that technology
quite well and I wanted to try and learn something new.

3.1.3 Frontend

JavaScript and its ecosystem have dramatically changed in the past five years.
The JavaScript world is constantly evolving with new frameworks appearing

32

3.1. Selecting technologies

and disappearing basically on monthly basis. For years, it was a standard and
sufficient to use jQuery library for all frontend development, but as the web-
sites started to be more like applications than just static pages, the need
for better frameworks than jQuery emerged. One of the first frameworks
were Backbone and AngularJS (both released in October 2010), which were
quite popular and widely used until around 2014. At that time, a Facebook’s
framework called React [27] started getting large traction and made Angu-
larJS, Backbone and all others look obsolete. Google, developer of AngularJS,
learned from mistakes and disadvantages in AngularJS and in September 2016
released brand new rewrite of AngularJS under the name Angular (also called
Angular2) [28]. Nowadays, React and Angular2 are the biggest competitors,
known also by others outside of frontend developers community. Vue.js is
becoming popular very recently, but is still not as known as the first two.

As I had no experience with either React or Angular2, I had to rely on other
resources when comparing these two. The opinions on React and Angular2
vary and it is impossible to find a clear answer to which is a better framework.
From technical point of view I especially liked how React is composed of small
components and has a one direction binding with virtual DOM (Document
Object Model). On the other hand, Angular2 utilizes TypeScript (JavaScript
with static typing and class-based OOP) and provides all functionality out
of the box, whereas React is more like a library. Each framework has its
advantages and disadvantages and for unbiased person it is difficult to choose
one over another. After all, I have decided to use React mainly because of
its popularity. React has been around for over four years and has a proven
track record of production usage, larger community, many learning resources
and other support libraries. Angular2, which was released in September 2016
and at the time of this decision was just few months old, did not have any of
that. Therefore, the following section will focus on React only and will briefly
describe its fundamentals.

3.1.3.1 React

As previously stated, React is developed by Facebook and was initially released
in 2013. It is something between a small unopinionated framework and a large
library, even though its official description says: ”A declarative, efficient, and
flexible JavaScript library for building user interfaces.” [27]. In my opinion,
since there are many libraries specificaly made for and strongly connected to
React, all together it can be considered as one framework.

3.1.3.1.1 Virtual DOM React popularized several interesting principles,
which were not common in frontend development before; one of them being
Virtual DOM. Every website is made of HTML DOM (Document Object
Model) and uses nested HTML elements to specify how it looks. Browsers
provide JavaScript API functions like getElemebtById or setAttribute, which

33

3. Design and Implementation

is used by developers directly or by other JavaScript frameworks to modify
the HTML DOM and thus appearance of a website. If the API is invoked
only with necessary changes, it performs well, however, it puts constraints
on framework and developer to always invoke only necessary calls to achieve
desired changes. React and its Virtual DOM made it possible, that developer
does not have to bother about what changed on each HTML element, but only
set the right state on a component (React’s class, which is then rendered as one
or more HTML elements). The Virtual DOM is a parallel DOM in JavaScript
memory and whenever some component’s state changes, React invokes render
method on that component, which returns simple JavaScript objects (Called
React elements) defining how the component itself and all nested components
should look like. This is then compared to Virtual DOM and any difference
between element in Virtual DOM and corresponding element in just returned
React elements is reflected by invocation of API methods to modify and syn-
chronize actual DOM with Virtual DOM. This is one of the core concepts
of React and is described in more detail at official documentation [29] or by
Facebook’s Software Engineer at [30].

3.1.3.1.2 Components For someone coming from MVC framework world,
starting with React can be confusing. In terms of MVC, React itself is only
the ’V’; it is just view library. The key building stone in React are compon-
ents, which should represent small set of HTML elements needed to create
one meaningful but small part of the whole page, such as in figure 3.3. Re-
act components can and should be nested and if designed correctly, easily
reusable even across different projects. React component has two important
attributes, props and state. Props holds data passed by parent component
and state keeps current state of the component. Component has no more
information about the application’s state than what is passed to it in props.
Whenever state changes, render method is invoked. In render method de-
veloper writes code which specifies how this component should look like based
on state, desired styles, values to display, other nested components and so
on. The render method typically uses JSX - a language syntactically sim-
ilar to HTML. Returned React element is then compared to Virtual DOM as
described in previous paragraph, and changes are applied on real DOM via
browser’s API.

3.1.3.1.3 Redux React component can easily communicate with its par-
ent or children via props and communication between sibling components can
be done via their parent. However, this makes it difficult when components
are in different sub trees of the hierarchy with the first common ancestor way
up in the hierarchy, at worst case at root. To illustrate the problem let’s con-
sider root component of an application called App which contains information
in its state whether user is logged in or not. Then, at deeper level of some sub

34

3.1. Selecting technologies

Figure 3.3: React components hierarchy - from risingstack.com

tree, there is a component UserSettingsButton, which should be shown only
if the user is logged in. In order for UserSettingsButton to know whether
the user is logged in, each component between App and UserSettingsButton

would have to pass this information to its child, which is obviously bothersome
3.4. There are several ways how to solve this problem such as using global
variables or passing large state objects (contexts) to each child component.
However, the most elegant and recommended way is to use Redux.

Figure 3.4: React components passing state via props

Simply put, Redux is a JavaScript library for managing application state.
It holds state of an application in one place called store and provides ways
how each component can modify and read the state. Reading the state is

35

3. Design and Implementation

straightforward: component subscribes for specific part of the state it needs
and whenever this part of the state changes, component is notified and rer-
endered. Modifying the state is a bit more tricky. It is not done by compon-
ents directly, but by emitting Actions, which are then processed by functions
called Reducers. Components dispatch action with some optional payload in-
formation, which are received by reducer function. This function then based
on current state and the action returns new modified state. For example, if
UserLogoutButton emits LOGOUT action, reducer will modify the state by
setting isLoggedIn to false, which will immediately trigger rerender of com-
ponents subscribed to this part of state, such as UserSettingsButton. Same
principle can be used for any state modification including HTTP requests,
which typically utilizes action TRIGGER REQUEST with request informa-
tion such as url and HTTP method in payload. One of the advantages of this
approach is also the way how an application can be debugged. Since every
change of state happens as a reaction to actions, it is easy to log and later sim-
ulate any change of the application’s state; in Redux terminology this method
is called time traveling.

There are other interesting concepts used by Redux, such as immutability
of state, however, I believe that the necessary fundamentals have been de-
scribed. While using Redux I have also realized, that it requires a developer to
make many steps to implement even basic functionality; subscribe component,
define action, dispatch action and implement reducer behavior. Therefore, I
used it only for state information which is more of global character and shared
between several components in different subtrees of the application hierarchy,
such as already mentioned logged in user information.

3.2 Outage detection

Detecting outage is the absolute core part of the application, so I started
developing it first. In analysis section 1.5 I have described that flows in me-
diation system are not streams but data sent in batches in more or less peri-
odic intervals. It was also decided, that the best way to smooth this data is
by increasing the granularity. In this section I will describe development of
the outage detection algorithm, problems that appeared and how they were
tackled.

3.2.1 Algorithm’s fundamental concept

In cases I just want to monitor if a system is running or not, detecting outage
can be implemented quite easily by some periodical checks. After all, similar
approach have been used in old monitoring tool until now. However, this
method is not reliable enough, because the system may look functional even
though it does not work as expected, such as when it is processing only small
fraction of data than it usually does.

36

3.2. Outage detection

To make the detection smarter, I have decided to create an algorithm
which will in its basis firstly calculate expected traffic level, then compare it
to the actual traffic level and potentially, if other conditions are met, trigger
alarm.

3.2.2 Calculating expected traffic

At the first sight it is noticeable that most flows have a traffic cycle of one day.
The prediction algorithm will therefore calculate expected traffic level from
traffic levels of the same time but in previous days. I tried several functions for
computing the prediction: median, mean, weighted mean and trimmed mean.
The results were mostly similar to already mentioned comparison of those
function in analysis chapter 1.5. Mean is not suitable because exceptional days
such as New Year’s day can increase the expected value for many following
days. Weighted mean with larger weight for most recent days brings advantage
of faster following trends, but still has the same problem as mean (for shorter
period though). It turned out that the most suitable function to choose here is
median; it is resilient to outliers and no unusual traffic can significantly distort
the predictions. This also brings the benefit that the prediction computation
does not have to ignore days which experienced outage, which is considered
important since data from the provider do not contain information about
historical outages.

3.2.3 Periodical traffic changes and trends

In 1.5.3 I analyzed and found out unexpected traffic changes and trends that
can occur. It was discovered, that the traffic mostly depends on whether it is
weekend, national holiday or business day. First step was to tune the algorithm
for business days and weekends as it is the most common change. I started
with the simplest solution which is to divide days on work days (Monday
to Friday) and weekend days (Saturday and Sunday). Calculating expected
traffic would then only use days of the same type: either work days or weekend
days. The results were surprisingly successful and for most flows sufficient.

However, few flows cannot be divided into work and weekend days. For
instance, German flow GGS - BIEL5 has traffic on Friday about 20% smaller
than during other work days and traffic on Sunday is 95% lower compared to
Saturday. Without any changes, the prediction for Sunday would always be
higher than it is usually, since Saturday would be used for prediction too 3.5a.
I came up with two possible solutions to this problem. First one was to allow
mediation engineers to set adjustment factor of the expected value for each
day. For BVSRZT it could be 80% of the expected value for Friday and 15% of
the expected value for Sunday. However, this solution would require engineers
to change the adjustment factor whenever the traffic on Friday or Sunday
changes compared to other days. The other option, which was later chosen as

37

3. Design and Implementation

(a) Regular prediction

(b) Prediction with independent Friday, Saturday and Sunday

Figure 3.5: Independent days prediction

preferred, was to allow mediation engineers to set independent days. Those
days would then only be compared to past but same days of a week. This
solution is superior to the first one because it does not require any modification
in cases that traffic changes. It can be considered as a small disadvantage that
it will not follow very recent trend changes, but while examining the flows,
I have not found any single one where it would cause troubles. Illustration
of regular prediction and prediction with independent Friday, Saturday and
Sunday can be seen in figure 3.5. Another flow where independent days were
applied is BVS - BVSRZT, where Fridays are 10% less busy and Mondays
10% more busy than other work days.

3.2.4 Sudden traffic changes

Using algorithm with floating window works well for long lasting and slowly
changing trends, where the prediction can easily and automatically adjust
because of floating median window. Quick but weekly periodical trends can

38

3.2. Outage detection

be also overcome by mechanisms described in previous section. What is left
to tackle and turned out to be the most difficult are sudden quick changes in
traffic. Sudden changes occur during nationwide events such as Christmas,
New Year’s Eve or national holiday and were already partially described in
analysis chapter 1.5.3.

3.2.4.1 National holidays

At first I looked into national holidays and tried to find some pattern about
how the traffic behaves. From analysis phase I already knew, that national
holiday also influences traffic of surrounding days, which makes it even more
difficult and complex. Furthermore, some national holidays have bigger in-
fluence on traffic than others. While developing the algorithm I had data
available only for three typical national holidays: September 28, October 28
and November 17, and I realized that there will never be enough of recent
national holidays data to base predictions strictly on past national holidays.
Fortunately, it was discovered that weekends have similar traffic pattern as
national holidays and can be used for calculating the expected traffic level.
As seen in figure 3.6, on 28th of September the traffic was greater than expec-
ted and on 17th of November the traffic was smaller than expected by 17%,
even though weekend predictions are typically withing 5% percent deviation
for this flow. Sadly, I could not find any reason why some national holidays
are more busy than others and since only one year data are available, making
any conclusions is not possible here. Nevertheless, approximating national
holidays to weekends is the best I could do and 17% difference is still within
acceptable range.

Christmas Day and New Year’s Eve have the opposite effect on some flows,
such as SMS LoB where the traffic skyrockets at peak hours 1.9. Since this
is a positive change, there is no risk that false alarm could be triggered and
fine-tuning the algorithm to increase the expected traffic level for few hours
of a year is not worth the time and extra complexity, which would have to be
introduced.

3.2.4.2 Days around national holidays

The traffic on days around national holidays is even more tricky to estimate
than the national holidays itself. It was already shown in analysis chapter, that
national holiday can influence and significantly decrease traffic on surrounding
days as it happened a day after 17th of November 2016. First idea I had was
to try to come up with a way how to find flows with correlating traffic and use
data of other correlated flows when deciding about an outage. Obviously, this
approach would be tricky in the sense that if all correlated flows suffered a real
outage, the algorithm might not detect it. Another problem with this solution

39

3. Design and Implementation

Figure 3.6: National holidays with weekend median

would be an introduction of certain complexity that would turn the monitoring
algorithm into a black box.

After consultation with the stakeholders I decided to use much simpler
and understandable approach. Work days anticipated to be less busy than
usual will be called lazy days and each flow will have a configuration attribute
specifying how much the expected traffic should be decreased on lazy days
called lazyDayDecrease (default value was set to 0.7, meaning a traffic on lazy
days is expected to be 70% of its usual level). The last step is to find the lazy
days. For now, I have decided to let administrators manually specify lazy days
in global settings for each country similarly to national holidays, but a basic
algorithm could be implemented in the future to find them automatically.

3.2.5 Severity of outage

With described algorithm and techniques, the application is able to set expec-
ted level of traffic for each tick by using floating mean and then compare it
to current traffic level and compute the difference; I called it tick difference.
While evaluating the results it was found that traffic over night is more un-
stable and prone to changes than during a day. Night traffic is dramatically
smaller and around 3am is usually not even 1% of peak time traffic. There-
fore, naturally, any change in traffic during a night can have large impact on
tick difference while the severity of such a change is for most flows absolutely
negligible when put in context of daily average traffic levels. To understand
why this is a problem, it is important to note that each alarm causes support
engineers to take an action and that costs money, thus in some cases it might
not be worth to trigger alarm.

It was suggested by stakeholders to create peak and off-peak hours, which

40

3.2. Outage detection

tickDifference =
actual

expected

dayDifference =
actual − expected

dayAverage

trafficDifference = max(dayDifference, ticDifference)

Figure 3.7: Calculating traffic difference

would each have different levels of alarm threshold, such as 0.8 for peak and
0.4 for off-peak hours. However, there are several disadvantages of this solu-
tion. Firstly, it requires specific configuration for each flow of peak hours and
thresholds and they might even change over time. Furthermore, the change
in traffic is typically gradual and setting strictly peak and off-peak hours does
not reflect that.

I proposed different solution which was later accepted by the stakeholders.
In addition to tick difference, a day difference is computed. The difference
between expected and actual traffic is divided by day average so that it ex-
presses a significance of the decrease in context of average traffic level. This
approach suppresses alarms for traffic drops which are not significant and
does not require any special settings like rush hours. However, in cases that
day difference would be greater than tick difference (typically in peak hours),
the tick difference is used to prevent exaggeration of traffic drops. The whole
formula is shown in figure 3.7 and comparison of day difference to tick differ-
ence in figure 3.8. It can be seen that around 3am the traffic is almost same
as was expected and tick difference still shows decrease of 30%. The day dif-
ference performs more reasonably and shows drop of about 2%. On the other
hand, to not completely ignore very significant outages during less busy hours,
the dayDifference is not applied if traffic is less than 10% of expected tick level.

Last but not least, some flows such as paid SMSs should be monitored
strictly even during off-peak hours, because not forwarding paid text mes-
sages can cause severe losses even then. The application will therefore allow
monitoring engineers to choose between using day difference and tick differ-
ence.

3.2.6 Detecting outage

Previous sections have shown how to calculate expected traffic value, deal
with predictable and less predictable changes and compute traffic difference.
In this section I will describe rules which are applied when deciding whether
outage alarm should be triggered or not.

I divided the detecting outage process into two phases: detecting outlier

41

3. Design and Implementation

Figure 3.8: Tick and day difference

and detecting outage. Detecting outlier is executed every time analysis is
run. The goal of this phase is to quickly find whether a flow is behaving
correctly or not and to achieve that, traffic difference value is computed by
using mentioned techniques. Then it is compared to softAlarmLevel, which
can be different for each flow. Typically, softAlarmLevel is around 0.8 and
means that traffic difference above 0.8 is considered as inlier and healthy. If
traffic difference is below softAlarmLevel, the flow is handed over to outage
detector for further evaluation.

At first, outage detector compares the traffic difference to hardAlarmLevel,
which is usually around 0.5. If traffic difference is lower than hardAlarmLevel,
flow is marked immediately as failing. If it is between soft and hard alarm
levels, traffic difference is calculated also for one previous tick. If chronologic-
ally first traffic difference is above soft alarm, flow is marked with warning label
only, but if both time differences are below soft alarm level, flow is announced
as failing. Implementing this soft and hard levels logic was necessary, because
some flows are not stable enough and sometimes time difference of stand-alone
ticks can be as low as 0.7 and still not signify any traffic problems. However,
two consecutive ticks with time difference below 0.8 are usually already a sign
of some problems.

This two phase design also allows to implement not so accurate but quick

42

3.3. Architecture design

outlier filter in first phase and in second phase execute CPU-intensive but
not so performant algorithm only on flows which are more likely to be failing.
After all, the logic implemented in second phase turned out to be not as
complicated as was initially expected, however, this two phase design might
prove to be beneficial in the future when second phase is extended.

To illustrate outage detection, I picked input flow SMSCCTX of SMS
LoB. On 20th of January 2017 the provider started slowly moving traffic from
the flow to SMSCFRA and thus it can be very well seen, how soon the al-
gorithm detects this. I did not manage to find a way how to indicate outages
in Matplotlib (Python graph library) nicely, therefore, I am using screenshot
taken from the application itself 3.9. The gray areas bordered with red lines
depict detected outages. Soft alarm (yellow horizontal line) is set to 0.8 and
hard alarm (red horizontal line) to 0.5. Needless to say, that SMSCCTX is
quite stable flow and much more strict alarm levels could be used.

3.3 Architecture design

The application’s architecture is divided into four stand-alone parts. First
one is MongoDB database, which is persisting all data. Next, there is API
service which provides API over the database for frontend application and
allows it to access and modify configurations, flows or get flow traffic data.
Then there is monitoring daemon, which is a service running in background
and monitoring each flow in periodic intervals. Furthermore, it also receives
and stores mediation data to database via message broker and sends outage
alarms to other systems. Last but not least, there is a frontend service which
serves only JavaScript and static files to users and the frontend application on
users’s machine communicates with API service directly. The whole overview
of the architecture is depicted on 3.10 and interesting parts will be described
in following sections.

3.4 Monitoring daemon

Monitoring daemon is with database the most crucial service and apart of
monitoring the flows it also communicates with other systems to receive me-
diation traffic data and send outage alarms. Daemon is composed of several
components which are started immediately upon daemon starts and are de-
scribed in following subsections.

3.4.1 Consuming mediation flow data

Receiving mediation traffic data is essential for the monitoring analysis. Data
are transported via Kafka messaging system to achieve smooth and real-
time delivery. Data receiver is implemented in integration package in class

43

3. Design and Implementation

(a) Traffic

(b) Traffic difference

Figure 3.9: Outage detection of SMS - SMSCCTX from 20th of January 2017

MediationDataConsumer. Right after daemon starts, this class depending on
configuration, connects to specified Kafka server and topic. The incoming
messages are expected to be in JSON format and follow structure specified in
figure 3.2. The data are then stored into appropriate collection and minute
document in the database.

44

3.4. Monitoring daemon

Monitoring application

Kafka

MongoDB

API service

Frontend
service

Mediation
engineer

Monitoring
daemon

Kafka

Mediation
system

Mediation flow traffic data

Incidents
processing

Outage alarms

Figure 3.10: Application’s architecture

{
"country": <String: "CZ"|"DE"|"NL"|"AT">,

"lobName": <String: name of LoB >,

"type": <String: "inputs" | "forwards">,

"flowName": <String: name of flow >,

"dataSize": <Integer: number of bytes transferred >,

"time": <String: time in format %d.%m.%Y %H:%M:%S>

}

Listing 3.2: Incoming mediation traffic message schema

3.4.2 Analyzing flows

Another component is called MediationScheduler. This component periodic-
ally executes MediationAnalyzerExecutor every 15 seconds and Discover-

FlowsExecutor every hour. MediationAnalyzerExecutor checks each flow
and sends the flow in a queue if last completed tick has not been analyzed
yet. Then there are workers waiting to analyze any flow that appears in
the queue. The actual number of workers can be specified in application’s
configuration file. Every flow in the queue is processed by exactly one worker
instance and analyzed using the outage detection algorithm. The resulting

45

3. Design and Implementation

Figure 3.11: Flow analysis process

flow’s state is saved into database and if the state is different from previous
one, other systems are notified via Kafka and a record of the change is cre-
ated in events collection. Sequence diagram of this process is sketched in
figure 3.11. The processing model used here is called producer-consumer and
takes advantage of multiple execution threads. Performance tests have shown
that analyzing all 4500 flows with only one worker takes about 10 minutes
but using 5 workers reduces the running time by half to 5 minutes. There
is also a possibility to extract workers from this daemon and make them as
a stand-alone services, which would then allow for easy horizontally scaling
across multiple nodes and thus increasing the performance linearly. How-
ever, the running time of five minutes does not require such a solution since
the lowest granularity of a flow is fifteen minutes now and I did not want to
complicate the deployment at this moment. Furthermore, scanning all flows is
necessary only when the applications starts for the first time or at midnight,
when even flows with 1 day granularity need to be analyzed. Nevertheless,
changing into stand-alone worker services will not require much of additional
work once it is required.

3.4.3 Triggering alarms

A flow can be in three states: OK, WARNING and OUTAGE. Any change
between these states is emitted via messaging system to other systems and
especially a change to OUTAGE state is important. Sending out notifications
is managed by MediationStateProducer. It is a singleton class instantiated

46

3.4. Monitoring daemon

at start of the monitoring daemon. At first, it tries to connect to Kafka server
specified in the configuration and if it fails, retry will follow in two minutes
intervals. In order to not lose any emitted messages even when the produ-
cer is not yet connected to Kafka server or when the connection breaks for
a while, MediationStateProducer keeps all messages in its own queue until
they are successfully sent. There is a separate thread which reads the queue
and submits them to Kafka. Moreover, first message that fails to be sent to
Kafka causes EmailSender to send an informative email regarding the issue
to an email address specified in configuration file. The schema of flow state
change message is shown in figure 3.3

{
"system": "mediation",

"country": <String: "CZ"|"DE"|"NL"|"AT">,

"lobName": <String: name of LoB >,

"flowName": <String: name of flow >,

"tickTime": <String: time of tick in ISO 8601 format >,

"time": <String: time of creation in ISO 8601 format >,

"newStatus": <String: "OK"|" WARNING "|" OUTAGE "|"N_A">,

"previousStatus": <String: "OK"|" WARNING "|" OUTAGE "|"N_A">,

}

Listing 3.3: Outgoing flow state change message schema

3.4.4 Discovering new flows

DiscoverFlowsExecutor’s goal is to accommodate requirement for adding
and removing flows automatically (F2). This component is executed every
hour and looks at flow’s which were active in last day. When a new flow not
yet in config collection is discovered, this component creates a record for
it with default configuration settings and thus immediately schedules it for
analysis in next MediationAnalyzerExecutor round.

3.4.5 Monitoring of daemon’s components

Even though the application’s task is to monitor mediation flows, the ap-
plication itself must also be monitored to ensure everything works correctly.
For monitoring of Kafka consumer and producer, ComponentMonitoring is ex-
ecuted every 10 seconds and stores current state of consumer and producer into
database. It can be then accessed by API service when a request for applic-
ation’s status is received. Moreover, each time MediationAnalyzerExecutor

is executed, a current timestamp is stored in the database so other system can
be sure that it is up and running.

47

3. Design and Implementation

3.5 API service

Monitoring daemon and database would be enough just for monitoring the
flows. In order for the application to be fully usable, it also needs to provide
ways for mediation engineers to examine and visualize traffic on mediation
flows, determine and set the right settings for each flow and allow other sys-
tems to consume traffic data or application’s status in an easy way. API
service exists to satisfy these needs.

While many APIs are called RESTful, not many of them actually meet all
six requirements of RESTful architecture. It can be said, that this API service
is stateless, follows HTTP methods usage and resources naming conventions
and uses JSON format.

3.5.1 Authorization

The API service implements authorization to meet the functional requirement
F6. Any request to the API must contain valid API key in X-API-KEY header,
except for /login endpoint, which returns API key in response to valid user-
name and password. Wrong or missing API key results in 401 response status
code and request with insufficient permissions gets 403.

3.5.2 Endpoints

There is over fourty endpoints and all are divided into four categories: app,
config, data, flows.

App /app Endpoints under this path are related to general application’s
functionality. There are endpoints for getting status of the monitoring
application, getting recent status changes of flows (called events), getting
current time of the application, authenticating users into the system as
well as creating and modifying them.

Config /mediation/config Endpoints under this path allow modification
of metadata of countries such as national holidays or lazy days.

Flows /mediation/flows These endpoints allow mediation engineers to
configure each LoB or flow. LoB or flow can be enabled or set with new
configuration parameters, such as granularity, alarm levels or type of
difference to be used. If a GET request for country, LoB or specific flow
contains query parameter includeStatus=true, in addition to config-
uration the response will also contain their status. New flows or LoBs
can be also added or even deleted. The endpoints follow the hierarchical
structure of flows (country, LoB, flow) and REST API resource naming
conventions, so for instance, resource of a single flow is located at GET

/<country>/<lobName>/<flowName>.

48

3.5. API service

Data /mediation/data There are two endpoints in this path. POST /query

servers traffic data for flow based on granularity and other parameters in
the requests’s body. This endpoint is used by frontend application when
rendering traffic, difference and outage graph. The response contains
a list of ticks with traffic, differences, status and expected traffic. Fur-
thermore, the response also contains an object with metadata. An ex-
ample of request and response can be seen on 3.4. Next data endpoint is
POST /insert, which can be used to insert mediation traffic data from
csv file into database as an alternative to Apache Kafka. Additionally,
data can also be stored to database via command-line interface tool,
which has far better performance and is not limited to HTTP server’s
maximum uploaded file size limit.

POST /query

{
"from":"01.02.2017",

"to":"15.02.2017",

"country":"CZ",

"lobName":"GSM",

"flowName":"MSSBRN1A",

"granularity":0

}

Response:

{
"data": [

{
"MSSBRN1A": 188385532,

"_id": "2017-02-01T00:00:00+01:00",

"dayAverage": 1162595297.6666667,

"dayDifference": 1.023,

"expected": 161627916,

"status": "OK",

"tickDifference": 1.166

},
...// object for each tick withing the range

],

"metadata": {
"flowName": "MSSBRN1A",

"granularity": 480,

"metrics": {
"GSM": {

"type": "traffic"

},
"dayAverage": {

"type": "traffic"

},
"dayDifference": {

49

3. Design and Implementation

"type": "difference"

},
"expected": {

"type": "traffic"

},
"status": {

"type": "other"

},
"tickDifference": {

"type": "difference"

}
}

}

Listing 3.4: Illustration of a request for getting flow’s traffic data and its
response

3.6 Data model

Since document databases allow to store hierarchical data easily, I took full
advantage of it and the model of structures stored in database is very similar
and usually identical to structures used on application layer. As a result, little
to none mapping between application and database entities need to be done.

3.6.1 Traffic data

Flow mediation traffic data are stored in database named mediation data

in a collection traffic. The model used for storing traffic data is identical
to the one already described in document databases section 3.1.1.2.2 where
different types of databases were evaluated and document database with used
model was chosen as the best solution.

3.6.2 Flows configuration

Next, the application uses mediation database, which keeps all other col-
lections. Config collection has one object with key mediation and contains
configuration of countries (national holidays and lazy days) and all flows. A
single configuration of flow is simple object with following properties:

granularity Integer: Length of tick in minutes to be used for analysis.

hardAlarmLevel Double: Level of hard alarm. Value between 0 and 1.

softAlarmLevel Double: Level of soft alarm. Value between 0 and 1.

difference String: Type of difference to be used for analysis. Value either
day or tick.

50

3.6. Data model

enabled Boolean: Whether the flow should be monitored.

independentDays List of integers: Days which should be handled independ-
ently when computing expected value. Monday to Sundays equals to 0
to 6 respectively.

minimalExpectation Integer: Minimal amount of bytes transmitted on this
flow in one tick. Default value is 1 and it mimics the old monitoring
system’s behavior 1.4.

As was discussed earlier, there are two types of flows: input flow and
forward flow, and both must be assigned to LoB. It was discovered that flows
in one LoB usually have similar characteristics, such as granularity or suitable
alarm levels. Moreover, forward flows are depending on exactly one input
flow (they forward data from input flow to other system) and are somewhat
subordinates of inputs flows. To ease and reduce necessary configurations, I
have decided to model configuration data model to respect this hierarchy by
implementing configuration inheritance. In case forward flow does not have
configuration specified, it will inherit configuration of connected input flow.
If input flow does not have configuration specified, it will use configuration of
LoB and if LoB has no configuration, it will use default configuration specified
in the application’s code.

3.6.3 Analysis results

The monitoring daemon performs analysis of flows in interval specified by
flow’s granularity. For each flow, the results of analysis are stored into data-
base mediation collection statuses and document flows. Any change in
status is also recorded in events collection. This data is then access by fron-
tend application via API service when it displays dashboard or list of flows.
The status object contains name of flow, tick time which was analyzed, time
of analysis, traffic level and status. Events collection have one document per
event with automatically generated id. Each event document contains time of
event, country, message, tick time, previous and new status and flow name.

3.6.4 Daemon’s components monitoring

As was mentioned, it is necessary to assure that all monitoring daemon’s
components are running. For this purpose, their status is periodically or at
the time of execution written into system document in statuses collection
together with time. Similarly to analysis results, this document is accessed
by API service whenever other systems or scripts monitoring this application
request it.

51

3. Design and Implementation

3.6.5 Users

Last but not the least collection is users. Each document represents one user
and contains its login name, password hash, account type (user or app), API
key and permissions (root or readOnly).

3.7 Backend Implementation

In this section I would like to describe parts of backend implementation that
were not mentioned in API service or monitoring daemon sections. The whole
application is contained in one git repository and monitoring daemon and
API service are located in backend directory. Since many parts of the API
service and daemon are common (especially queries to database and flow ana-
lyzing algorithm), they share most of the codebase. Monitoring daemon is
started by running daemon.py and it starts scheduler from monitoring mod-
ule mediation, Kafka producer and consumer. API service is started by
api service.py which starts Flask HTTP server on port 5000 and exposes
the API endpoints.

3.7.1 Database queries

Both, API service and monitoring daemon must access traffic data in the data-
base. Queries from API service are typically much larger since frontend dis-
plays data of certain date range; maximum allowed range is 28 days. Data
queries are located in module mediation.data query with most general quer-
ies communicating with database in mediation.data query.engine. The fol-
lowing list provides overview of queries used by the API service and monitoring
daemon and their relationships are depicted on class diagram 3.12. All queries
used by API service are used for getting data for frontend applications’ charts.

DatesQuery For given dates and flow it retrieves traffic data from database.

DateRangeGroupQuery Accepts 2 dates in constructor and with the help
of DateQuery retrieves traffic data for all days between them.

ExpectedTrafficQuery This query calculates expected traffic for the given
flow and a date. To get traffic data of past days it uses DatesQuery.

FlowLevelDateRangeQuery For provided dates range this query first cal-
culates expected traffic for each date by using ExpectedTrafficQuery

and then computes differences between expected and actual traffic. This
query is called from API data query endpoint only and to boost the per-
formance, traffic data for each day are loaded once and provided in
constructor.

52

3.7. Backend Implementation

Figure 3.12: Class diagram of traffic queries

OutageDateRangeQuery Another query used by API data query endpoint
only. For each tick in date range, this query calls FlowAnalyzer and
retrieves its status. Actual and expected traffic data retrieved earlier in
the endpoint are passed down to FlowAnalyzer and OutageDetector to
improve performance by avoiding repetitive queries for the same data.

TickTrafficQuery This query is used by OutageDetector in cases it does
not have cached data for the tick - it is executed only from monitor-
ing daemon, where only current tick is evaluated. The query retrieves
current and expected traffic for tick provided in constructor.

SimilarPastDaysFinder This class is used by ExpectedTrafficQuery to
find similar days which should be used for calculating the expected
traffic.

3.7.1.1 Daylight saving time

It can be seen that all queries are using DatesQuery in some way to re-
trieve data. The principle on which DatesQuery works was explained earlier
in 3.1.1.2.3. It uses MongoDB aggregation framework, but unfortunately it
turned out to be problematic for retrieving traffic data across summer and
winter time changes. All times in MongoDB are saved in UTC and the ag-
gregation framework groups records based on UTC times. To align ticks with

53

3. Design and Implementation

Prague time CET CEST UTC

0:00 0:00 1:00 23:00

1:00 1:00 2:00 0:00

3:00 2:00 3:00 1:00

4:00 3:00 4:00 2:00

5:00 4:00 5:00 3:00

Table 3.2: Daylight saving time change on 26th of March 2017

start of a day, I was subtracting 60 minutes from each datetime before group-
ing stage. That works as long as the times are only in CET timezone, which
is only one hour ahead of UTC. Once the time changed to CEST timezone,
this no longer worked for queries with dates spanning across CET and CEST
timezones and tuning MongoDB aggregate query to subtract 60 or 120 minutes
depending on the specific date and time is too difficult if not impossible. In-
stead, I have decided to use the aggregate framework to group data by max-
imum of 60 minutes and all further processing (grouping and setting the right
timezone) is done in Python. It still significantly reduces the amount of
data returned from MongoDB and at the same time allows easier handling
of timezones.

Nevertheless, change to summer time can still be troublesome for ticks of
two hours. The 2:00 hour is simply left out 3.2 and thus the ticks for 26th
of March 2017 are 0:00, 3:00, 4:00, 6:00. Naturally, the 3:00 (or could be
also called 2:00) tick consists of just one hour and thus is going to have less
(half) traffic than expected. Since most of the flows are using day difference
it does not cause any outage alarms, but in the future it might be needed to
separately handle this very special corner case that occurs once in a year on
flows with 2 or 3 hours granularity settings. Functions for handling ticks time
are located in util.py file and are using ’Europe/Prague’ timezone which
stands for UTC+1 or UTC+2 depending on specific date and time. Change
from summer to winter time is not so bothersome, because one hour is added
so the ticks are 0:00, 2:00, 4:00 and the 2:00 tick consists of three hours in
total - that certainly will not cause any outage. Interestingly, the stakeholders
confirmed that there are always troubles with at least few systems or scripts
that stop working as a result of daylight saving time change. Handling time
changes correctly is surely a big challenge for all developers.

3.7.2 Time shift feature

Live stream of mediation traffic does not always have to be available, especially
in development and testing phase. For this reason I have decided to implement
time shift feature so that the whole application can be simulated as if it was
working on real-time data without actually having access to it. The whole

54

3.8. Frontend application

application is using AppConfig.getCurrentTime() function to get current
time, which can return time shifted backwards by defined number of days in
configuration file. Historical data can be inserted into database via csv files
and special scripts.

3.7.3 Application configuration file

Aside of configuration of flows which is stored in database, the more technical
parts of application are configured via config.json file. It is located in root
directory and uses JSON format. It contains information about number of
threads used by mediation analysis, credentials to MongoBD database, Kafka
servers and names of topics to connect to and also necessary information for
sending emails in cases that sending messages over Kafka is not working.
Example of full configuration file is shown at listing C.2.

3.8 Frontend application

In this section I will describe application’s user interface and its implementa-
tion details.

3.8.1 User interface

The main purpose of the application is to reliably run on a background and
monitor mediation system. The user interface is going to be used by about
ten operation engineers mainly to set flows’ configuration and occasionaly
inspect traffic when problems occur. Due to low number of final users and
frontend application being less crucial than backend, less effort was devoted to
the frontend’s development process. As a result, some phases such as a design
of mockups and a creation of prototypes were omitted. The application’s
appearance was initially created based on expected use cases and then con-
tinuously developed and adjusted according to target user group’s feedback.

From the beginning it was apparent that the application should give a quick
overview of mediation system’s status upon login. As a solution, dashboard is
shown at home page 3.13. On first sight it gives overview of how many flows
are healthy or failing in each country. Furthermore, the dashboard includes
event log and allows user to show only recent severe events.

3.8.1.1 Flows

Left menu bar provides main navigation and user can go to country detail, set-
tings, user management or status page of the monitoring application. Country
detail shows list of LoBs and summary of flows statuses 3.14. LoBs can be
added, disabled or removed completely. Disabling LoB makes all flows in
the respective LoB disabled, too.

55

3. Design and Implementation

Figure 3.13: Application’s dashboard

Figure 3.14: Country detail

56

3.8. Frontend application

Figure 3.15: LoB detail

Similarly to country details, LoB detail presents flows divided into input
and forward lists 3.15. Each flow’s basic settings and status is shown and they
can be added, disabled or removed. LoBs default settings can be configured
in Config tab.

Most important page is probably detail of each flow. This page shows
specific information about flow’s configuration and traffic level including his-
torical traffic data 3.16. Left chart shows both types of difference and right
chart renders the actual traffic. Below differences chart is a control panel for
charts, where user can select granularity and days to display. Special thought
was given to a way how flows are configured. At first, I created HTML com-
ponents for each configuration property, such as dropdown for difference types,
input fields for alarm levels and so on. However, as number of configuration
properties was varying it turned out that best way is to let users modify con-
figuration directly via JSON format. Not only it saves time when adding
new configuration properties, but mainly it is very transparent, understand-

57

3. Design and Implementation

Figure 3.16: Flow detail - traffic graphs and configuration

able and easier approach for users, who are technically competent. Moreover,
it implicitly allows very easy copying of configurations, which would not be
possible with HTML components. The frontend only checks that specified
configuration is in a valid JSON format.

When charts are rendered for some time period using defined configura-
tion, detected outages are indicated with gray squares with red border lines.
Even though the data comes from API service, the outage detection algorithm
is shared between API service and monitoring daemon and thus allows precise
simulation of how the actual monitoring analysis will work. This is considered
as a very important and useful feature since the user can fine-tune the config-
uration on past data and get better estimate about how it is going to perform
in the future.

3.8.1.2 Country settings

Mediation settings page implements configuration of countries. Since each
country has mostly different holidays and expected lazy days, each country is
configured independently in tab. For a while I was considering to use online
service like holidayapi.com to fetch national holidays data, however, the ap-
plication is expected to run without connection to public internet, which makes
this option unfeasible. Instead, each country’s national holidays and lazy days
are configured manually on this page. I consider this as the biggest weakness
of the application’s user experience and in the future it could be improved by
an algorithm computing lazy days automatically.

58

3.8. Frontend application

3.8.2 Implementation

Since React is mostly a basic library and many other libraries are necessary
for a production ready application, I decided to use a React template project
to overcome difficulties in plumbing all React libraries to work together. After
evaluation of several templates I have decided to use CoreUI [31], which says to
be ”Bootstrap Template built as framework” and already includes necessary
libraries such as reactstrap, react-router and many others.

The frontend application’s view classes are divided into 2 main pack-
ages: components and views. Components package contains individual re-
usable components such as StatusBadge, ChartControl, FlowChart and so
on. These components are then used together in classes from views pack-
age, which represent individual pages. For instance, there are views like
Dashboard, FlowSettings, LoBDetail or FlowDetail. Navigation and rout-
ing between view pages is managed by react-router library and routing rules
are specified in router.js.

Redux library is used only for storing user details since it needs to by
accessed by many components, especially the permissions attribute. Cur-
rently, each view like LoBDetail or FlowDetail executes own API request
to get status of particular LoB or flow. This could be further optimized so
the statuses are downloaded once, stored globally with Redux and access by
all components in the application. On the other hand, the navigation speed
between pages is still smooth enough and this inefficiency is negligible.

For accessing API service there is a class Api.js, which adds necessary
API key header to all requests. Other helper methods are implemented in
Util.js.

3.8.2.1 Authorization

When user visits the application for the very first time, a login screen is
presented to him. Upon submitting valid credentials, API service returns API
key which is saved in browser’s local storage. At next visit (or page reload),
API key is read from local storage and its validity is verified against API
service.

When users authorization and management was implemented, a request for
anonymous access with read only permission was raised by the stakeholders.
The motivation behind this is that mediation engineers, who only want to
inspect flow’s traffic and not to modify any configuration, does not have to
remember any login credentials. As a solution, the application creates user
account named visitor with readOnly permissions at the first run together with
root user. Login screen then contains button Login as visitor which triggers
request to /visitorLogin endpoint and returns API key of the visitor user.
The rest of application then works as expected. The visitor user can be deleted
as any other user from users management page.

59

Chapter 4

Design and Implementation of
ZooKeeper Monitoring

Due to the fact that main focus of the application is put on monitoring of me-
diation system, ZooKeeper monitoring is considered to be a proof of concept.
The resulting codebase should be modularizable and allow simple removal of
ZooKeeper monitoring module since it is not planned to be used in produc-
tion by the stakeholders. In this section I will focus on ZooKeeper monitoring
specifics and describe how it was implemented into the application.

4.1 Outage detection

Monitoring of ZooKeeper turned out to be far easier than monitoring of medi-
ation flows. The main difference is that it is not necessary to create algorithm
for calculating expected traffic or value. The status of ZooKeeper cluster
strictly depends on number of nodes and their individual statuses. For Zoo-
Keeper, it is crucial to have more than half of nodes working and connected
with each other to form a working quorum. Once a majority of nodes is on-
line ZooKeeper is guaranteed to work properly. Naturally, there might always
be bugs in the system which may cause ZooKeeper to not work as expected,
however, that is not responsibility of the monitoring tool detect it. The mon-
itoring algorithm thus only needs to periodically check all defined nodes, fetch
their statuses and based on that determine status of the whole cluster. If all
nodes are OK, the cluster status is set to OK. If not all but still more than
half of nodes are OK, cluster’s status is set to WARNING and less than half
of nodes in OK results in cluster’s status to be OUTAGE.

4.1.1 Fetching status

ZooKeeper is distributed system with no central node which would aggregate
the cluster’s information. Each node listens on standard port 2181 for incom-

61

4. Design and Implementation of ZooKeeper Monitoring

ing TCP connections and understands several commands. One of the com-
mands is named stat and its response contains various information about
the node 4.1. If the node is not connected to quorum, no response at all or
”This ZooKeeper instance is not currently serving requests” is returned.

ZooKeeper v e r s i on : 3 . 4 . 8 , b u i l t on 02/06/2016 03 :18 GMT
C l i e n t s :

/ 1 2 7 . 0 . 0 . 1 : 4 0 6 3 8 [0] (queued=0, recved =1, sent =0)

Latency min/avg/max : 0/0/0
Received : 2
Sent : 1
Connections : 1
Outstanding : 0
Zxid : 0x3b00000000
Mode : f o l l o w e r
Node count : 10

Listing 4.1: ZooKeeper stat command response

4.2 Monitoring daemon

The ZooKeeper monitoring module follows architecture pattern and principles
introduced by mediation monitoring. Monitoring daemon is fetching nodes’
statuses, writes them into database together with the cluster’s status and
sends message over Kafka if necessary.

At the start of monitoring daemon, ZookeeperAnalyzerExecutor is sched-
uled to run every five seconds. It sends stat command to each node in-
stance specified in config collection in document zookeeper. Various stats
are parsed from the response using regular expressions and node’s status is de-
termined. Analogously to flow statuses, it is then stored to collection statuses

in document zookeeper together with whole cluster’s status.

4.3 API service

All ZooKeeper related endpoints are under the path /zookeeper/.

/node/{string:socketAddress} POST request adds new ZooKeeper node
to configuration and DELETE request deletes it.

/cluster GET request returns configuration of the cluster: all nodes and
whether monitoring is enabled.

/cluster/enabled POST request enables monitoring.

62

4.4. Data model

/cluster/disable POST request disables monitoring.

/status GET request returns statuses of whole cluster and all nodes.

4.4 Data model

The configuration document contains ip address and port of all node instances
in ZooKeeper cluster and boolean attribute if the monitoring is enabled. Doc-
ument in statuses collection contains time of analysis, cluster’s status and
status of each configured node.

4.5 Frontend application

Frontend application is extended by one page, which works as both, a config-
uration and statuses overview page. It contains a list of nodes together with
their status and mode. Each node can also be removed or new node added.
Cluster’s status is displayed above the nodes list 4.1. Since ZooKeeper’s status
can change in few seconds and cluster analysis is executed every five seconds,
frontend application should show the most recent data. As a solution, ba-
sic HTTP polling is used, which means a request is sent to server every few
seconds. Nicer and more efficient solution would be to use push technology:
the server would send message to frontend application whenever status of some
node changes. On the other hand, as a proof of concept solution and given
the expected number of users, HTTP polling is sufficient and works well.

63

4. Design and Implementation of ZooKeeper Monitoring

Figure 4.1: ZooKeeper monitoring

64

Chapter 5

Deployment

Deployment is one of the last essential steps of software development. In this
chapter I will describe how the application can be ran and what types of
deployments are possible.

5.1 Deploying the application

There are two options how this application can be deployed and ran. For
quick and easy deployment I have prepared a Docker image. Docker is a plat-
form similar to virtual machine, but instead of simulating the whole operating
system it uses the host OS’s Linux kernel and thus has significantly better per-
formance and smaller image size. Typically, one Docker image corresponds to
one service or process, which in this case would mean total of four Docker
images and might require some Docker container orchestration tool such as
Kubernetes or Rancher. I did not want to overcomplicate the Docker de-
ployment and decided to put all four processes into a single image, which
for the application that is not expected to scale horizontally at this moment
works fine. Dockerfile used to create application’s image is shown at listing
C.3. It exposes ports for database (27017), API service (5000) and frontend
service (9000). On port 9001 listens Supervisor, which is described in the next
section.

Another option is to deploy the application directly to a host OS. The big
disadvantage here is that over fifteen dependencies must be installed on the OS,
including Python modules and compatible MongoDB version. All dependen-
cies are specified in Appendix A. Once they are installed, the application can
be simply checked out from git repository or unpacked from zip file.

65

5. Deployment

Figure 5.1: Supervisor control panel

5.2 Running the application

The application consists of four independent processes (or services) that all
must be started in order to work properly. Furthermore, it is important to re-
start them if they crash, give overview of their status and store logs. One way
to do this is by creating custom scripts, but that can be quite demanding task
if done properly. Other option is to use some already implemented solution
and I have decided to use Supervisor [32]. It is a ”client/server system that
allows its users to monitor and control a number of processes on UNIX-like op-
erating systems” and fits perfectly for this task. All Supervisor’s configuration
is written in supervisor.conf file like processes’ start commands or log files
paths. For this application I configured four processes to be ran under the Su-
pervisor. I was nicely surprised that Supervisor automatically compresses log
files and deletes too old logs. Furthermore, Supervisor runs its own HTTP
server, which can be used to monitor and control processes and access most
recent log messages via browser 5.1. An example of Supervisor’s config file
is shown at listing C.1. After all, it was a great choice to use Supervisor to
orchestrate application processes and saved a lot of time. The Supervisor is
started by shell command supervisord -c supervisor.conf.

5.3 Deployment to production

The provider has several environments in independent networks. Prior to ap-
plication being used in production, it is first ran and evaluated in test environ-
ment. Test environment can be imagined as a smaller copy of production en-
vironment which is trying to imitate most of its functionality. Unfortunately,
the mediation system is not fully simulated in test environment so deploy-
ing the monitoring application there does not bring any benefit as it cannot
be properly tested. The only option left is deployment to production, where
the mediation system is running and data can be transported to monitoring
application and analized in real time. Since the application is not critical, it
can be deployed in parallel to already existing monitoring tool without having

66

5.4. Deployment to DigitalOcean

any impact on live running operations and rest of the environment.

However, deploying the application turned out to be more problematic
than was initially expected. Until now, I had no work experience in large
corporations and did not realize how complicated and lengthy internal pro-
cesses, rules and overall bureaucracy can be. The application was ready for
first deployment at the end of March and both deployment possibilities were
presented to stakeholders: Docker image and direct deployment. The pro-
vider has very strict internal rules about what can be used in production
environment and any software including all dependencies must be approved
by security team and managers first before being installed. Unfortunately,
Docker is not approved and thus this option, which is significantly easier, is
not realizable. The only choice left is direct deployment to one of servers
in production environment, which also showed up to be complicated. What
makes the approval process even more complicated is the fact, that security
team and managers are located in Germany and upon their approval, it is
passed onto system administrators in Košice, Slovakia, who do the actual in-
stallation. Request for approval and installation of all dependencies specified
in Appendix A has been submitted at the beginning of April and as of today,
May 20th 2017, it is still pending for approval.

5.4 Deployment to DigitalOcean

Since deployment to the production environment is not possible yet, I have
decided to carry out deployment into some cloud service and verify that it
works. There are numerous cloud hosting services and the biggest players in
the market are AWS from Amazon, Google Cloud Platform and Azure from
Microsoft. All of these platforms offer tens of services for all kinds of cloud
applications such as load balancers, distributed storages, message queues and
many more. However, the monitoring application is going to be hosted on
usual UNIX system and all these platforms are overkill. Therefore, I was look-
ing for more simple platform with shallow learning curve. After some research
I have decided to use DigitalOcean [33], which offers many preconfigured Linux
systems including one with Docker. That allowed me to try also direct deploy-
ment, since DigitalOcean provided me access to virtual private server where
Docker was preinstalled. To run Docker image, only docker run --name

monitoring-app -itd -v <mongoDataFilePath>:/data/db -p 9000:9000 -p

9001:9001 -p 5000:5000 -p 27017:27017 <imageName> command needs to
be executed.

Installing all dependencies is certainly more difficult. The specific steps
of installation depends on Linux versions and configured software repositor-
ies. In case that requried dependency version is not present in configured
repositories, it might be even necessary to compile the dependency directly
on the system. When all dependencies are installed, the application is started

67

5. Deployment

with supervisord command as was described in 5.2.
Obviously, DigitalOcean deployment does not have access to the provider’s

production network, so integration with Kafka and live streaming mediation
traffic data to the application could not be tested. On the other hand, thanks
to the time shift feature the application is running and behaving as if it was
in production environment except for the fact that the application’s time is
shifted few weeks back.

5.5 Running ZooKeeper

For testing and demonstration purposes it was also necessary to simulate Zoo-
Keeper cluster and its outages. For this purpose I have downloaded ZooKeeper
and configured five nodes on local machine. Since all nodes are running on
one host they have to use different ports. The client port of node i is set to
2180+ i starting from 1. Each nodes’s configuration also contains information
about all other nodes including their ports for communication with leader
and leader election. The cluster configuration is shown on 5.1. Last but not
the least configuration step is to write id of each node (i) to corresponding
file /data/myid. Once node is configured, it is started by ./zkServer.sh

start-foreground.

s e r v e r .1= l o c a l h o s t : 2888 :3888
s e r v e r .2= l o c a l h o s t : 2889 :3889
s e r v e r .3= l o c a l h o s t : 2890 :3890
s e r v e r .4= l o c a l h o s t : 2891 :3891
s e r v e r .5= l o c a l h o s t : 2892 :3892

Listing 5.1: ZooKeeper cluster node’s configuration

68

Chapter 6

Evaluation

The algorithm and application were described in detail in previous chapters
and here I would like to provide a summary of what was accomplished and
what are the results.

6.1 Mediation monitoring evaluation

Due to the fact that the application was not connected to live stream of
mediation traffic data yet, it is not possible to fully evaluate its integration
functionality with live data in production. However, the application can still
be tested by using time shift feature or by exploring historical data. Unfortu-
nately, even though the stakeholders provided historical incidents information
to me, it could not be used for quantifying the algorithm’s results because it is
not apparent if particular incident influenced and was reflected by mediation
traffic.

Outage detection algorithm’s results highly depend on correctly set expec-
ted traffic level. I have identified traffic deviation trends and came up with
ways how to use them when estimating the traffic levels. Estimating the traffic
for ordinary work day and weekends was just a first step. Next problem that
was successfully tackled were national holidays. Another traffic trend that I
have identified and had to be addressed were days around national holidays
(so-called lazy days). Even though I tried several ways how to correctly calcu-
late the expected value for them, I did not discover any pattern that would be
guaranteed to work. What also made it more difficult was the fact, that there
is only very few lazy days in the historical dataset I had available. As the best
solution, it was decided to let mediation engineers manually set expected lazy
days in countries’ configuration.

Thanks to the time shift feature and application deployed and perman-
ently running at DigitalOcean, I and stakeholders were able to observe and
evaluate the application as if it was running in production. At first, most of
detected outages were caused by incorrect flow settings like too low granularity

69

6. Evaluation

Figure 6.1: EWSDICCDR February decrease of traffic

or too high alarm levels. After a few days of tuning Czech flows’ configur-
ations, the application detected minimal or none false positives, but it was
still detecting traffic anomalies reliably. For instance, on time shifted day of
February 7th 2017, the monitoring daemon has detected outage on eight flows
with five being a part of EWH LoB. After examining EWSDICCDR input
flow I had found that first outage was already detected few days ago on 3rd
of February at 12pm. It can be seen in figure 6.1 that the flow was slowly
loosing traffic down to zero on 21st of February. The old monitoring system
would detect first outage on 21st of February while this application triggered
alarm 18 days earlier. This is obviously considered as a huge improvement
and the new monitoring algorithm is superior to the old one. Other flows
were part of M2M LoB and had no traffic at all so the alarm was also very
well legitimate.

The feedback regarding overall application, such as user experience or other
functionality, was very positive. I have received few requests for improvement
of small UI related things like to use units with metric prefixes in chart (instead
of 9000000 display 9MB) or put direct link from event log record to related
flow. There are several unit tests for functionality where it was suitable and
worth, including time operations on daylight saving time change and analysis
of flow level with mocked traffic data.

F1 Visualization of flows Users are able to select desired date range
and granularity and examine the traffic. It also applies outage detection
algorithm on the selected date range, so that user knows how it would
perform.

F2 Adding and removing flows There is a discovering code running
every hour which adds new flows to the configuration and schedules
them for analysis automatically.

70

6.1. Mediation monitoring evaluation

F3 Countries support The application supports all four countries, but
only flows of the Czech Republic were examined in more detail.

F4 Monitoring and anomaly detection The application is triggering
alarms in situations and with limitations described earlier.

F5 Flows settings Settings of any flow can be changed by the user. Fur-
thermore, the settings is inherited from LoB by input flow and forward
flow, but it can be overridden.

F6 User login The application allows only authenticated users to change
settings of the flows. Furthermore, there is a visitor login button for
quick read only access.

F7 System integration The application implements consumer and pro-
ducer for Apache Kafka, but its functionality could not be tested in
production yet.

F8 Provide API API used by the frontend application is available for
any other application if the correct API key is contained in the request,
including traffic data endpoint POST /mediation/data/query.

NF1 Performance The analysis of flows is run in parallel on multiple
threads and for all 4500 flows takes about five minutes on DigitalOcean
server (2GB RAM, 2x virtual CPU@1.8 GHz). Request for data of
a flow for 28 days and with sixty minutes granularity takes less than
four seconds. Requests with smaller granularities should also use smaller
time range.

NF2 Monitoring The application exposes monitoring endpoint provid-
ing information about seven components or services of the monitoring
application. The frontend application also uses this endpoint.

NF3 Design Based on feedback from the stakeholders, the application’s
interface is easy to use and understandable. Their comments and re-
quests for improvements have been incorporated.

6.1.1 Further development

The application implements all necessary functionality to serve its purpose,
but there are still few future development ideas (or more like nice-to-haves)
that were not implemented due to time and scope constraints.

It was already mentioned in frontend application’s description, but it would
be nice to cache data from API in Redux state instead of sending request every
time a page is changed. Furthermore, push messages could be used to provide
more elegant way of getting the newest data to the users, but that will also

71

6. Evaluation

require implementation of messaging queue between monitoring daemon and
API service.

In regard to monitoring itself, it would be indeed great to come up with
a better way to the problem of lazy days. Next, the backend could also try to
guess initial configuration for newly discovered flows, especially the granularity
level.

6.2 ZooKeeper monitoring evaluation

ZooKeeper monitoring module was tested only locally since it is not meant to
be deployed into provider’s environment. Local ZooKeeper cluster is started
by following steps described in 5.5. The outage of single node was simulated
by killing single node’s process and it was reflected in the frontend application
within five to ten seconds, together with changing cluster’s status to warning
or outage depending on number of online nodes. The ZooKeeper monitoring
is performing well and there are no changes or improvements that I would
know of.

72

Chapter 7

Conclusion

This thesis has focused on monitoring of various systems and the main goal was
to implement monitoring application for core system of telecommunication’s
provider.

In the beginning this thesis has described mediation system and its key role
in provider’s infrastructure. Next, several monitoring tools used by the pro-
vider were briefly introduced including an application for monitoring of me-
diation system and its flaws. After that, it has analyzed mediation system’s
flows, described their characteristics and traffic trends and specified general
requirements for new monitoring application.

Later, this thesis has covered development process of a new mediation
system’s monitoring application. At first, various technologies for database,
backend and frontend were considered and most suitable ones were selected.
Based on flows’ analysis, new outage detection algorithm was designed and
implemented with chosen technologies, followed by careful architectural design
of the whole application, which consists of total of four services. Interesting
services and design and implementation issues were discussed together with
application’s user interface as well as its implementation.

I have been in close contact with the stakeholders to assure that the ap-
plication meets their needs and that it can be deployed to production. At
first, I had to understand the mediation system well so I could later propose
solutions and ways how to solve particular monitoring problems. I have also
collected requirements for the user interface and further improved it based
on stakeholders’ feedback. Unfortunately, due to internal corporate processes,
the application did not receive permission for deployment to production yet
due to various dependencies, which need to be approved first by security team.
However, the monitoring functionality was simulated by using historical data
and the results were discussed. It is estimated by the stakeholders that the ap-
plication will receive a permission for deployment in the following months.

In parallel to mediation system monitoring, this thesis has analyzed several
big data tools and for one chosen tool, ZooKeeper, a monitoring module has

73

7. Conclusion

been implemented to the monitoring application and its functionality has been
evaluated.

7.1 Personal evaluation

Thanks to this thesis I had a chance to experience an atmosphere of a large
IT corporation and work on a project that is going to be used in a production,
which made it more challenging but also exciting at the same time. It was
also very interesting to learn about infrastructure of a telecommunication
provider and the mediation system. Furthermore, I have learned several new
technologies such as document databases, backend Python, React for frontend
development and Apache Kafka and immediately got experience by using them
on real project.

At the end I was a bit disappointed by the complex lengthy approval
process of application dependencies, which delay the application deployment.
On the other hand I understand it is necessary, since the provider is serving
millions of customers and businesses and after all, I even admire the security
level they have. I enjoyed working on this project and I am very grateful I
was given this opportunity.

74

Bibliography

[1] Apache Software Foundation. Apache Camel. [Online, accessed: 2017-04-
09]. Available from: http://camel.apache.org/

[2] GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).
Technical Specification Group Services and System Aspects; Telecommu-
nication management; Charging management; Charging architecture and
principles. Reference 32.240, Release 11.

[3] Savitzky, A.; Golay, M. J. E. Smoothing and Differentiation of Data by
Simplified Least Squares Procedures. Analytical Chemistry, 1964.

[4] Riordon, J.; Zubritsky, E.; Newman, A. Top 10 Articles. Analytical Chem-
istry, volume 72, 2000.

[5] Schafer, R. What Is a Savitzky-Golay Filter? [Online, accessed: 2017-
04-09]. Available from: https://ai.berkeley.edu/~ee123/sp15/docs/
SGFilter.pdf

[6] IBM. IBM Tivoli. [Online, accessed: 2017-04-12]. Available from: https:
//www.ibm.com/software/tivoli

[7] Lohr, S. I.B.M. to Pay $743 Million For Developer Of Soft-
ware. [Online, accessed: 2017-04-12]. Available from: http:

//www.nytimes.com/1996/02/01/business/ibm-to-pay-743-
million-for-developer-of-software.html

[8] BMC Software Inc. Truesight. [Online, accessed: 2017-04-12]. Available
from: http://www.bmc.com/it-solutions/truesight.html

[9] BMC Software Inc. TrueSight Intelligence. [Online, accessed: 2017-04-
12]. Available from: http://documents.bmc.com/products/documents/
80/80/468080/468080.pdf

75

http://camel.apache.org/
https://ai.berkeley.edu/~ee123/sp15/docs/SGFilter.pdf
https://ai.berkeley.edu/~ee123/sp15/docs/SGFilter.pdf
https://www.ibm.com/software/tivoli
https://www.ibm.com/software/tivoli
http://www.nytimes.com/1996/02/01/business/ibm-to-pay-743-million-for-developer-of-software.html
http://www.nytimes.com/1996/02/01/business/ibm-to-pay-743-million-for-developer-of-software.html
http://www.nytimes.com/1996/02/01/business/ibm-to-pay-743-million-for-developer-of-software.html
http://www.bmc.com/it-solutions/truesight.html
http://documents.bmc.com/products/documents/80/80/468080/468080.pdf
http://documents.bmc.com/products/documents/80/80/468080/468080.pdf

Bibliography

[10] Forster, F. collectd. [Online, accessed: 2017-04-03]. Available from:
https://collectd.org/

[11] Elastic Inc. Logstash, Elasticsearch, Kibana. [Online, accessed: 2017-04-
03]. Available from: https://www.elastic.co/

[12] Dean, J.; Ghemawat, S. MapReduce: Simplified Data Processing on
Large Clusters. [Online, accessed: 2017-04-09]. Available from: https:

//research.google.com/archive/mapreduce.html

[13] Apache Software Foundation. Apache Hadoop. [Online, accessed: 2017-
04-09]. Available from: http://hadoop.apache.org/

[14] Apache Software Foundation. Apache Spark. [Online, accessed: 2017-04-
09]. Available from: http://spark.apache.org/

[15] Karau, H.; Konwinski, A.; Wendell, P.; et al. Learning Spark: Lightning-
Fast Big Data Analysis. O’Reilly Media, 2015, ISBN 1449358624.

[16] Apache Software Foundation. Apache Zookeeper. [Online, accessed: 2017-
04-15]. Available from: http://zookeeper.apache.org/

[17] Apache Software Foundation. Apache Curator. [Online, accessed: 2017-
04-15]. Available from: http://curator.apache.org/

[18] Apache Software Foundation. Apache HBase. [Online, accessed: 2017-04-
09]. Available from: https://hbase.apache.org/

[19] Codd, E.F.; IBM Research Lab, San Jose, CA. A relational model of data
for large shared data banks. Communications of the ACM, volume 13,
1970.

[20] Oracle Corporation. MySQL 5.7 Reference Manual. [Online, accessed:
2017-04-18]. Available from: https://dev.mysql.com/doc/refman/5.7/
en/

[21] Oracle Corporation. Oracle Database Online Documentation 11g. [On-
line, accessed: 2017-04-18]. Available from: http://docs.oracle.com/
cd/B28359 01/index.htm

[22] MongoDB Inc. MongoDB. [Online, accessed: 2017-04-10]. Available from:
https://www.mongodb.com/

[23] Couchbase Inc. N1QL Opens Couchbase Server to Massive SQL
Ecosystem. [Online, accessed: 2017-04-10]. Available from: https:

//www.couchbase.com/press-releases/n1ql-opens-couchbase-
server-to-massive-sql-ecosystem

76

https://collectd.org/
https://www.elastic.co/
https://research.google.com/archive/mapreduce.html
https://research.google.com/archive/mapreduce.html
http://hadoop.apache.org/
http://spark.apache.org/
http://zookeeper.apache.org/
http://curator.apache.org/
https://hbase.apache.org/
https://dev.mysql.com/doc/refman/5.7/en/
https://dev.mysql.com/doc/refman/5.7/en/
http://docs.oracle.com/cd/B28359_01/index.htm
http://docs.oracle.com/cd/B28359_01/index.htm
https://www.mongodb.com/
https://www.couchbase.com/press-releases/n1ql-opens-couchbase-server-to-massive-sql-ecosystem
https://www.couchbase.com/press-releases/n1ql-opens-couchbase-server-to-massive-sql-ecosystem
https://www.couchbase.com/press-releases/n1ql-opens-couchbase-server-to-massive-sql-ecosystem

Bibliography

[24] Apache Software Foundation. Apache Cassandra. [Online, accessed:
2017-04-09]. Available from: http://cassandra.apache.org/

[25] Hewitt, E. Cassandra: The Definitive Guide: Distributed Data at Web
Scale. O’Reilly Media, 2011, ISBN 1491933666.

[26] Ronacher, A. Flask. [Online, accessed: 2017-04-05]. Available from:
http://flask.pocoo.org/

[27] Facebook Inc. React. [Online, accessed: 2017-04-20]. Available from:
https://facebook.github.io/react/

[28] Google Inc. Angular. [Online, accessed: 2017-04-20]. Available from:
https://angular.io/

[29] Facebook Inc. The Diffing Algorithm. [Online, accessed: 2017-
04-20]. Available from: https://facebook.github.io/react/docs/
reconciliation.html

[30] Chedeau, C. React’s diff algorithm. [Online, accessed: 2017-04-21]. Avail-
able from: https://calendar.perfplanet.com/2013/diff/

[31] Lukasz Holeczek. CoreUI. [Online, accessed: 2017-04-05]. Available from:
http://coreui.io/

[32] McDonough, C. Supervisor. [Online, accessed: 2017-05-05]. Available
from: http://supervisord.org/

[33] DigitalOcean Inc. DigitalOcean. [Online, accessed: 2017-05-07]. Available
from: https://www.digitalocean.com/

77

http://cassandra.apache.org/
http://flask.pocoo.org/
https://facebook.github.io/react/
https://angular.io/
https://facebook.github.io/react/docs/reconciliation.html
https://facebook.github.io/react/docs/reconciliation.html
https://calendar.perfplanet.com/2013/diff/
http://coreui.io/
http://supervisord.org/
https://www.digitalocean.com/

Appendix A

Application Dependecies

The application requires following dependencies and is tested with stated ver-
sions.

• MongoDB 3.4.1

• Python 3.5.2

• pip3 9.0.0

• npm 4.0.5

• Node.js 4.2.6

• Supervisor 3.2.0

• Python 3.5 modules:

– pymongo 3.4.0

– flask 0.12

– pytz 2016.7

– schedule 0.4.2

– simplejson 3.10.0

– flask cors 3.0.2

– python-dateutil 2.6.0

– kafka 1.3.3

• npm modules:

– express 4.14.0

– pushstate-server 3.0.0

79

Appendix B

Acronyms

CDR Call Detail Record

SQL Structured Query Language

MMS Multimedia Messaging Service

SMS Short Message Service

JSON JavaScript Object Notation

API Application Programing Interface

REST Representational State Transfer

GSM Global System for Mobile Communications

LoB Line of Business

TSP Telecommunications Service Provider

iBMD international Billing Mediation Device

RDD Resilient Distributed Dataset

HTTP Hypertext Transfer Protocol

HTML HyperText Markup Language

DOM Document Object Model

81

Appendix C

Selected configuration files

Listing C.1: Supervisord config file

[i n e t h t t p s e r v e r]
port =∗:9001

[program : mongodb]
command=/root /app/db/ bin /mongod −−dbpath=/root /app/db/ data −−auth
s t d o u t l o g f i l e=%(ENV APP LOG DIR) s /mongodb . l og
r e d i r e c t s t d e r r=true

[program : f rontend]
command=pushstate−s e r v e r %(ENV APP DIR) s / f rontend / bu i ld / 8080
s t d o u t l o g f i l e=%(ENV APP LOG DIR) s / f rontend . l og
r e d i r e c t s t d e r r=true

[program : a p i s e r v i c e]
command=python3 . 5 %(ENV APP DIR) s /backend/ a p i s e r v i c e . py
s t d o u t l o g f i l e=%(ENV APP LOG DIR) s / a p i s e r v i c e . l og
r e d i r e c t s t d e r r=true

[program : daemon]
command=python3 . 5 −u %(ENV APP DIR) s /backend/daemon . py
s t d o u t l o g f i l e=%(ENV APP LOG DIR) s /daemon . l og
r e d i r e c t s t d e r r=true

83

C. Selected configuration files

Listing C.2: Backend configuration file

{
” f l a s k ” : {

”debug” : fa l se
} ,
” system” : {

” daysOf f s e t ” : −90
} ,
” mediat ion ” : {

” threadsCount ” : 8
} ,
”mongo” : {

” user ” : ” user ” ,
”password” : ”password”

} ,
” i n t e g r a t i o n ” : {

” kafka ” : {
” s e r v e r s ” : ” 1 2 7 . 0 . 0 . 2 : 9 0 9 2 , 1 9 2 . 1 6 8 . 1 . 5 : 9 0 9 2 , ” ,
” outputTopic ” : nu l l ,
” inputTopic ” : n u l l

} ,
” emai l ” : {

” to ” : ” tech−support@provider . com” ,
” from” : ” mediation−monitor ing@provider . com” ,
” login” : ” mediation−monitor ing@provider . com” ,
”password” : ”password” ,
”smtpHostname” : ”smtp . prov ide r . com”

}
}

}

84

Listing C.3: Docker image configuration (Dockerfile)

FROM python :3.5− s l im
RUN apt−get update
RUN apt−get i n s t a l l s c r e en
RUN apt−get −−assume−yes i n s t a l l python2 . 7
RUN apt−get −−assume−yes i n s t a l l python−pip
RUN pip2 i n s t a l l s u p e r v i s o r
RUN apt−get −−assume−yes i n s t a l l node j s
RUN apt−get −−assume−yes i n s t a l l npm
RUN npm i n s t a l l expre s s
EXPOSE 27017 28017
VOLUME / data /db
ENV appDir /home/app
RUN mkdir ${appDir}
WORKDIR ${appDir}

ADD mongodb−l inux−x86 64−debian81 −3 . 4 . 1 . ta r mongodb
ADD defau l tRequirements . txt .
RUN pip3 i n s t a l l −r ${appDir}/ de fau l tRequirements . txt
ADD backend backend
RUN pip3 i n s t a l l −r ${appDir}/ backend/ requi rements . txt
ADD frontend f rontend
ADD s u p e r v i s o r . conf s u p e r v i s o r . conf
EXPOSE 5000 9000 9001
RUN mkdir −p log
CMD superv i s o rd −c ${appDir}/ s u p e r v i s o r . conf

85

Appendix D

Contents of enclosed CD

readme.txt the file with CD contents description
src............................the directory of application source codes
text

thesis.pdf...........................the thesis text in PDF format
src the directory of LATEX source codes of the thesis

87

